Synthesis, Docking and Antimicrobial Activity of Some New Coumarin Incorporated Thiazole Derivatives

Author(s):  
Abhishek Kumar ◽  
Pankaj Kumar ◽  
Aravinda Pai

Synthesis and screening of a series of new coumarin derivatives coupled with thiazole are performed for their antimicrobial properties. A series of new thiazolyl coumarin derivatives were synthesized upon refluxing 3-bromoaceytl coumarin, substituted benzaldehyde and thiosemicarbazide in the presence of glacial acetic acid. Substituted 3-acetyl coumarin undergoes bromination in the presence of bromine and chloroform to form 3-Bromoaceytl coumarin. The thiazolyl coumarin derivatives were characterized based on IR, 1H NMR, and Mass spectral data. The docking studies have been carried out against the enzyme DNA gyrase (1KZN). Compound SCT 2 showed the highest docking score -5.662 compared to other compounds. The final synthesized compounds were screened for their antibacterial activity by tube dilution method. Compound SCT 1 and SCT 2 showed significant antibacterial activity with minimum inhibitory concentration of 12.5µg/ml and 6.25µg/ml, respectively, compared to standard Cephalosporin. The MIC results suggest that compounds SCT 1 and SCT 2 showed promising antibacterial activity. So these compounds are interesting lead molecules for further synthesis as antimicrobial agents. 

Author(s):  
Piyush B. Vekariya ◽  
Jalpa R. Pandya ◽  
Vaishali Goswami ◽  
Hitendra S. Joshi

Some novel 6-fluoro chroman derivatives having 1,2,4-triazolo-[3,4-b]thiadiazole were synthesized and characterized by IR, NMR and mass spectral analysis. All synthesized compounds were screened for antimicrobial activity using broth dilution method. All the compounds showed good antimicrobial activity and compound 5e showed significant antibacterial activity.


Author(s):  
Abhishek Kumar ◽  
Pankaj Kumar ◽  
Prashant Nayak ◽  
D. S. Sandeep ◽  
Sneh Priya ◽  
...  

Drug resistance causes serious difficulties in the routine therapy for curing common microbial infections. Thus it is very essential to develop new antimicrobial agents which can offer alternative treatments. The development of potent and effective antimicrobial agents is of utmost importance to overcome the emerging multidrug resistance strains of bacteria and fungi. The technique involves Knoevenagel reaction between substituted salicylaldehyde and ethyl acetoacetate in presence of piperidine as catalyst to give 3-acetyl coumarin. The intermediate coumarinyl chalcones was synthesized by condensing with various substituted benzaldehyde in presence of ethanolic KOH. The final synthesized pyridine-3-carbonitrile derivative was prepared upon refluxing with coumarinyl chalcones with malononitrile in presence of ammonium acetate. All the newly synthesized compounds were assigned on the basis of IR, 1H NMR and mass spectral data.  The finalsynthesized compounds were screened for their antibacterial activity tube dilution method. Most of the compounds showed promising MIC by tube dilution method as compared to standard Cephalosporin.


Author(s):  
Sirisha Kalam ◽  
Sai Krishn G ◽  
Kumara Swamy D ◽  
Sai Santhoshi K ◽  
Durga Prasad K

Pharmacological agents that kills parasites are essential drugs in some tropical countries. In this study, a series of 2-amino substituted 4-phenyl thiazole derivatives (4a-e) have been synthesized by the conventional method. The thiazole derivatives were synthesized by three steps. The obtained five derivatives were purified by recrystallization using methanol as a solvent or column chromatography. They were characterized by melting point, TLC, FTIR, 1H NMR and MASS spectral data. Compounds 4a-e were evaluated in silico by using different software’s (Lipinski’s Rule of 5, OSIRIS molecular property explorer, Molsoft molecular property explorer, and PASS & docking studies). These compounds were then evaluated for their possible anthelmintic activity against Indian adult earth worms (Pherituma postuma). All the compounds displayed significant anthelmintic activity. Compound 4c and 4e were more potent compounds when compared with the standard drug (mebendazole). Molecular docking studies guided and proved the biological activity against beta tubulin protein (1OJ0). In conclusions, these new molecules have promising potential as anthelmintic for treatment of parasites.   


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2011 ◽  
Vol 76 (9) ◽  
pp. 1199-1206 ◽  
Author(s):  
Raju Chaudhari ◽  
Sahebrao Rindhe

Herein the synthesis of a series of novel 8-(1- alkyl/alkylsulphonyl/alkoxycarbonyl-benzimidazol-2-ylmethoxy)-5- chloroquinoline derivatives is reported. These derivatives were prepared by the condensation of o-phenylenediamine with [(5-chloroquinolin-8- yl)oxy]acetic acid, followed by substitution at nitrogen with different electrophilic reagents in presence of an appropriate base to give a series of nitrogen heterocycles containing the benzimidazole and quinoline nuclei. The structures of the compounds were confirmed based on 1H-NMR, 13CNMR, IR and mass spectral data. Almost all the compounds exhibited promising antibacterial activity against Salmonella typhimurium and Staphylococcus aureus. Some of the compounds showed good antifungal activities against Aspergillus niger but the antifungal activities against Candida albicans were disappointing.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 978 ◽  
Author(s):  
Lian-Hua Fu ◽  
Qing-Long Gao ◽  
Chao Qi ◽  
Ming-Guo Ma ◽  
Jun-Feng Li

Silver-based antimicrobial nanomaterials are considered as the most promising antibacterial agents owing to their outstanding antimicrobial efficacy and their relatively low toxicity to human beings. In this work, we report on a facile and environment-friendly microwave-hydrothermal method to prepare cellulose/Ag nanocomposites using hemicellulose as the reductant. The influences of the microwave-hydrothermal heating time and temperature, as well as the hemicellulose concentration on the formation of cellulose nanocomposites, were investigated in detail. Experimental results indicated that the hemicellulose was an effective reductant for silver ions, with higher temperature and longer heating time favoring the formation of silver with higher crystallinity and mass content in the nanocomposites. Moreover, the antimicrobial properties of the as-prepared cellulose/Ag nanocomposites were explored using Gram-positive S. aureus ATCC 6538 and Gram-negative E. coli HB 101 by both disc diffusion method and agar dilution method, and the nanocomposites showed excellent antibacterial activity. These results demonstrate that the as-prepared cellulose/Ag nanocomposites, as a kind of antibacterial material, are promising for applications in a wide range of biomedical fields.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3692 ◽  
Author(s):  
Jumina ◽  
Mutmainah ◽  
Purwono ◽  
Kurniawan ◽  
Syah

Microbial infections remains a serious challenge in food industries due to their resistance to some of the well-known antibacterial and antifungal agents. In this work, a novel monomyristoyl ester (fructosyl monomyristate) and two other derivatives (i.e., glucosyl and galactosyl monomyristates) were successfully synthesized from myristic acid and monosaccharides in two-step reactions. First, the myristic acid was converted to myristoyl chloride, and then the myristoyl chloride was reacted with fructose, glucose and galactose separately to produce the corresponding monosaccharide monomyristate derivatives. The structures of the synthesized products were confirmed by Fourier transform infrared (FTIR), proton and carbon nuclear magnetic resonance (1H- and 13C-NMR), and mass spectral (MS) data. The monomyristates esters were obtained in reaction yields of 45.80%–79.49%. The esters were then evaluated for their antimicrobial activity using the disc diffusion test. It was found that the esters exhibited a medium antibacterial activity against gram-positive bacteria; however, they showed a weak antibacterial activity against gram-negative bacteria. Amongst the esters, galactosyl myristate yielded the highest antibacterial activity against Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis, while glucosyl monomyristate exhibited the highest antibacterial activity only against Escherichia coli. Additionally, all products showed remarkable antifungal activity against Candida albicans. These findings demonstrate that monosaccharide monomyristate derivatives are promising for use as biocompatible antimicrobial agents in the future.


2012 ◽  
Vol 77 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Manav Malhotra ◽  
Mohit Sanduja ◽  
Abdul Samad ◽  
Aakash Deep

Structural modification of the front line antitubercular drug isoniazid provide a lipophilic adaptations of the drug in which hydrazide moiety of isoniazid is replaced by 1,3,4-oxadiazole heterocycles to eliminate in-vivo acetylation by arylamine N-acetyltransferase which results to form inactive acetylated drug. In the present study a series of sixteen oxadiazole derivatives were synthesized and characterized by (IR, 1H NMR, 13C NMR and Mass spectral) studies. All the synthesized compounds were evaluated for their antimicrobial activity by broth dilution method against two Gram positive strains (Bacillus subtilis and Staphylococcus aureus), two Gram negative strains (Pseudomonas aeruginosa and Escherichia coli) and fungal strain (Candida albicans and Aspergillus niger). The minimum inhibitory concentration of the compounds was in the range of 1.56-50 ?g ml-1 against bacterial and fungal strain. The results revealed that all synthesized compounds have a significant biological activity against the tested microorganisms. Among the synthesized derivatives 4g, 4h, 4m and 4p were found to be most effective antimicrobial compounds.


2021 ◽  
Vol 33 (8) ◽  
pp. 1849-1854
Author(s):  
M. Narasimha ◽  
B. Revanth ◽  
D. Mahender ◽  
P. Sarita Rajender

A series of triazole conjugated novel 2,4-disubstituted thiazole derivatives (9a-l) were synthesized from salicylaldehyde. These new chemical entities were characterized by their IR, 1H & 13C NMR, mass spectral data and their molecular docking studies were performed to identify potential inhibitors of CDK2 protein. The synthesized analogs 9a-l were docked with CDK2 protein (PDB: 1GIJ). Among these 9h, 9j and 9k showed better Glide score, Prime MM-GBSA and ADME properties as compared to seliciclib and dinaciclib cancer inhibiting drugs of CDK2 protein. The amino acid Val83 of CDK2 protein was consistently binding to new chemical entities indicating that amino acid is crucial and responsible for its inhibition. Present findings suggested that compound 9h has 100% human oral absorption with highest Glide score -8.3kcal/mol whereas drug molecules have feebler binding capacity and less Glide score indicating that the synthesized new chemical entity as potential inhibitor for CDK2 protein.


2021 ◽  
Vol 33 (5) ◽  
pp. 1107-1114
Author(s):  
S.B. Marganakop ◽  
R.R. Kamble ◽  
A.R. Nesaragi ◽  
P.K. Bayannavar ◽  
S.D. Joshi ◽  
...  

In the present study, an efficient, facile and green protocol for synthesis of quinoline fused 1,4-benzodiazepine (4a-j) by microwave irradiated condensation of 6/7/8-substituted 3-bromomethyl- 2-chloro-quinoline (3a-j) obtained from 2-chloro 6/7/8-substituted quinoline-3-carbaldehyde (1a-j) with 1, 2-phenylenediamine was developed. Surflex docking studies with K+ channel is one of the physiological targets and inhibition, which plays a role in the pathophysiology of depression revealed that all these compounds show consensus score in the range 2.71-3.68 indicating the summary of all forces of interaction. Further, compounds 4d, 4g and 4i exhibited potent antibacterial activity


Sign in / Sign up

Export Citation Format

Share Document