scholarly journals NUMERICAL MODEL INVESTIGATION OF SELECTED TIDAL INLET-BAY SYSTEM CHARACTERISTICS

1978 ◽  
Vol 1 (16) ◽  
pp. 76
Author(s):  
William N. Seelig ◽  
Robert M. Sorensen

A spatially integrated one-dimensional numerical model of inlet bay hydraulics has been combined with a simple sediment transport model to investigate selected tidal inlet-bay system characteristics. A parametric study has been performed using the models to determine the effect of various factors on the net direction and order of magnitude of inlet channel flow and sediment transport. Factors considered include astronomical tide type, storm surge height and duration, variation in bay surface area, time-dependent channel friction factor, and the addition of a second inlet connecting the bay and sea.

Water ◽  
2015 ◽  
Vol 7 (10) ◽  
pp. 5239-5257 ◽  
Author(s):  
Shervin Faghihirad ◽  
Binliang Lin ◽  
Roger Falconer

2020 ◽  
Author(s):  
Julio Garcia-Maribona ◽  
Javier L. Lara ◽  
Maria Maza ◽  
Iñigo J. Losada

<p>The evolution of the cross-shore beach profile is tightly related to the evolution of the coastline in both small and large time scales. Bathymetry changes in extreme maritime events can also have important effects on coastal infrastructures such as geotechnical failures of foundations or the modification of the incident wave conditions towards a more unfavourable situation.</p><p>The available strategies to study the evolution of beach profiles can be classified in analytical, physical and numerical modelling. Analytical solutions are fast, but too simplistic for many applications. Physical modelling provides trustworthy results and can be applied to a wide variety of configurations, however, they are costly and time-consuming compared to analytical strategies. Finally,  numerical approaches offer different balances between cost and precision depending on the particular model.</p><p>Some numerical models provide greater precision in the beach profile evolution, but incurring in a prohibitive computational cost for many applications. In contrast, the less expensive ones assume simplifications which do not allow to correctly reproduce significant phenomena of the near-shore hydrodynamics such as wave breaking or undertow currents, neither to predict important features of the beach profile like breaker bars.</p><p>In this work, a new numerical model is developed to reproduce the main features of the beach profile and hydrodynamics while maintaining an affordable computational cost. In addition, it is intended to reduce to the minimum the number of coefficients that the user has to provide to make the model more predictive.</p><p>The model consists of two main modules. Firstly, the already existing 2D RANS numerical model IH2VOF is used to compute the hydrodynamics. Secondly, the sediment transport model modifies the bathymetry according to the obtained hydrodynamics. The new bathymetry is then considered in the hydrodynamic model to account for it in the next time step.</p><p>The sediment transport module considers bedload and suspended transports separately. The former is obtained with empirical formulae. In the later,the distribution of sediment concentration in the domain is obtained by solving an advective-diffusive transport equation. Then, the sedimentation and erosion rates are obtained along the seabed.<br>Once these contributions are calculated, a sediment balance is performed in every seabed segment to determine the variation in its level.</p><p>With the previously described strategy, the resulting model is able to predict not only the seabed changes due to different wave conditions, but also the influence of this new bathymetry in the hydrodynamics, capturing features such as the generation of a breaker bar, displacement of the breaking point or variation of the run-up over the beach profile. To validate the model, the numerical results are compared to experimental data.</p><p>An important novelty of the present model is the computational effort required to perform the simulations, which is significantly smaller than the one associated to existing models able to reproduce the same phenomena.</p>


2013 ◽  
Vol 444-445 ◽  
pp. 901-905
Author(s):  
Ren Yong Huang ◽  
Jie Zhang

A numerical model for simulating unsteady flow and sediment transport in the mainstream and its tributaries at the TGR was presented in this paper, and a three-gradation method was applied to solve the flow governing equation. A experience formula was gave for the calculation of the size of groups of different coefficient of saturation recovery based on the analysis, so the traditional calculation method was improved in this paper. The validity of the model was checked with the observed data of the TGR from 2003 to 2011. Good agreement between the calculation and observed data was obtained. The simulation results show that this model could be used to simulate the flow and sediment transport at the TGR.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 18 ◽  
Author(s):  
Yong Lai ◽  
Kuowei Wu

Three-dimensional (3D) hydrostatic-pressure-assumption numerical models are widely used for environmental flows with free surfaces and phase interfaces. In this study, a new flow and sediment transport model is developed, aiming to be general and more flexible than existing models. A general set of governing equations are used for the flow and suspended sediment transport, an improved solution algorithm is proposed, and a new mesh type is developed based on the unstructured polygonal mesh in the horizontal plane and a terrain-following sigma mesh in the vertical direction. The new flow model is verified first with the experimental cases, to ensure the validity of flow and free surface predictions. The model is then validated with cases having the suspended sediment transport. In particular, turbidity current flows are simulated to examine how the model predicts the interface between the fluid and sediments. The predicted results agree well with the available experimental data for all test cases. The model is generally applicable to all open-channel flows, such as rivers and reservoirs, with both flow and suspended sediment transport issues.


2014 ◽  
Vol 15 (3) ◽  
pp. 595-625 ◽  
Author(s):  
Zoltan Horvat ◽  
Mirjana Isic ◽  
Miodrag Spasojevic

2016 ◽  
Vol 35 (2) ◽  
pp. 444-451 ◽  
Author(s):  
Dongmiao Zhao ◽  
Jun Tang ◽  
Xiuguang Wu ◽  
Changning Lin ◽  
Lijun Liu ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
pp. 11-20 ◽  
Author(s):  
S.-T. Dou ◽  
D.-W. Wang ◽  
M.-H. Yu ◽  
Y.-J. Liang

Abstract. Floods caused by levee breaching pose disastrous risks to the lower reaches and the flood flow zones of rivers. Thus, a comprehensive assessment of flow and sediment transport during floods must be performed to mitigate flood disasters. Given that the flow state becomes relatively more complex and the range of the submerged area becomes more extensive after a levee breach, this paper established a flow and sediment model by using two-dimensional shallow water equations (SWEs) to explore the breach development process and the flow and sediment transport in a curved bed after a levee breach due to overtopping. A three-element weighted essentially non-oscillatory Roe scheme was adopted for the discretization of SWEs. In addition, a non-equilibrium total-load sediment transport model was established to simulate the scour depth development process of the breach. A stable equilibrium of the breach was established based on flow shear force and soil shear strength. The lateral widening of the breach was simulated by the scouring-collapse lateral widening mode. These simulations, together with the levee breach experiment conducted in the laboratory, demonstrate the validity of the flow and sediment transport process established in this paper. The effects of water head in and out of the watercourse, the flow rate, the levee sediment grading, and other variables during levee breaching were also analyzed. The mathematical model calculation provided a number of physical quantities, such as flow rate and flow state at the breach, that are difficult to measure by using the current laboratory facilities. The results of this research provide fundamental data for developing measures that can reduce casualties and asset loss due to floods caused by levee breaching.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-14
Author(s):  
Irham Adrie Hakiki ◽  
Leo Eliasta Sembiring ◽  
Cahyo Nur Rahmat Nugroho

Sagara Anakan Lagoon has been continuously receded caused by the high sedimentation rate. The deposited sediment volume was predicted to be around 1 million m3/year. This phenomenon, if not treated will harm the existing ecosystem and also could cause many kinds of its native biota extinct. Engineering could be applied to prevent it. However, the transport and sedimentation pattern must be known for it to be effective.  Silting in Sagara Anakan Lagoon simulated by using MIKE21 numerical model which could simulate sediment transport in 2D horizontal scheme. The deposited sediment, mainly consisted of mud, so the model must be capable for simulating cohesive sediment transport. Model is set to simulate one year of morphological event which reached with the usage of time speed up acceleration factor. Model calibrated to be able to simulate a deposition event in the order of one million m3/year. Model calibrated by tuning critical bed shear stress for deposition   and erosion  parameters as a base for sensitivity analysis. Model result shown that the sedimentation in Sagara Anakan Lagoon is caused by asymmetry of flood and ebb current. Major siltation happened around the delta with the maximum and mean observed bed change are approximately 0.6 m and 0.16 m respectively. The setup for this model could be used as a base model for planning an engineering approach for controlling sediment in Sagara Anakan Lagoon.Keywords: Numerical model, cohesive sediment, mud transport, estuary modellingKata Kunci: Model numerik, sedimen kohesif, transpor lumpur, pemodelan estuari


Sign in / Sign up

Export Citation Format

Share Document