scholarly journals WAVE FLUME-BASED EVALUATION OF SUSPENDED SAND TRANSPORT IN BREAKING WAVES

2012 ◽  
Vol 1 (33) ◽  
pp. 56
Author(s):  
Junichi Otsuka ◽  
Yasunori Watanabe

In this study, suspended sediment concentration and velocity in surf zones was measured in a small-scale wave flume with three breaker types (plunging, spilling and intermediate) using an optical concentration sensor and an ultrasonic velocity profiler (UVP). The sediment pickup rate was also calculated from the depth-averaged concentration and the wave energy flux dissipation rate. In plunging breakers, relatively large amounts of sediment are suspended in the transition region due to strong three-dimensional turbulent flows generated by large-scale vortices. In spilling breakers, sediment concentration is lower than that seen in plunging breakers because smaller- scale vortices typically develop below the water surface in the transition region. Concentrations in both breaker types remain at lower levels in bore regions because the vortices fully develop into weak turbulent bores. Comparison in the same range of wave energy flux dissipation rates showed that the sediment pickup rates in these small-scale experiments were approximately 103 times greater than those calculated by Goda (2010) using various data compiled from large-scale experiments and field observations.

Author(s):  
Joep van der Zanden ◽  
Dominic A. Van der A ◽  
Tom O'Donoghue ◽  
David Hurther ◽  
Ivan Caceres ◽  
...  

This paper presents results obtained during a large-scale wave flume experiment focused at measuring hydrodynamics and sediment transport processes in the wave breaking region. The experiment involved monochromatic plunging breaking waves over a mobile bed barred profile consisting of D50 = 0.24 mm sand. Vertical profiles of velocity, turbulence, sand concentration and sand fluxes were measured at 12 cross-shore locations, covering the shoaling region up to the inner surf zone. Particularly high-resolution profiles were obtained near the bed within the wave bottom boundary layer, using an acoustic sediment concentration and velocity profiler (ACVP). Sheet flow concentration and particle velocities were measured at two locations near the bar crest using two conductivity-based concentration measurement tanks (CCM+). Total transport rates, obtained from the evolving bed profile measurements, were decomposed into suspended and bedload transport contributions across the bar. The present paper presents a summary of the key findings of the experiment, which are used to discuss existing approaches for modeling suspended and bed load transport in the surf zone.


2008 ◽  
Vol 26 (8) ◽  
pp. 2131-2142 ◽  
Author(s):  
V. K. Tsoukala ◽  
C. I. Moutzouris

Abstract. In the present paper a modified vorticity-based model for gas transfer under breaking waves in the absence of significant wind forcing is presented. A theoretically valid and practically applicable mathematical expression is suggested for the assessment of the oxygen transfer coefficient in the area of wave-breaking. The proposed model is based on the theory of surface renewal that expresses the oxygen transfer coefficient as a function of both the wave vorticity and the Reynolds wave number for breaking waves. Experimental data were collected in wave flumes of various scales: a) small-scale experiments were carried out using both a sloping beach and a rubble-mound breakwater in the wave flume of the Laboratory of Harbor Works, NTUA, Greece; b) large-scale experiments were carried out with a sloping beach in the wind-wave flume of Delft Hydraulics, the Netherlands, and with a three-layer rubble mound breakwater in the Schneideberg Wave Flume of the Franzius Institute, University of Hannover, Germany. The experimental data acquired from both the small- and large-scale experiments were in good agreement with the proposed model. Although the apparent transfer coefficients from the large-scale experiments were lower than those determined from the small-scale experiments, the actual oxygen transfer coefficients, as calculated using a discretized form of the transport equation, are in the same order of magnitude for both the small- and large-scale experiments. The validity of the proposed model is compared to experimental results from other researchers. Although the results are encouraging, additional research is needed, to incorporate the influence of bubble mediated gas exchange, before these results are used for an environmental friendly design of harbor works, or for projects involving waste disposal at sea.


Author(s):  
Dominic Van der A ◽  
Joep Van der Zanden ◽  
Ming Li ◽  
James Cooper ◽  
Simon Clark ◽  
...  

Multiphase CFD models recently have proved promising in modelling cross‐shore sediment transport and morphodynamics (Jacobsen et al 2014). However, modelling breaking wave turbulence remains a major challenge for these models, because it occurs at very different spatial and temporal length scales and involves the interaction between surface generated turbulence and turbulence generated in the bottom boundary layer. To an extent these challenges arise from a lack of appropriate experimental data, since most previous experimental studies involved breaking waves at small-scale, and have not permitted investigation of the turbulent boundary layer processes. Moreover, most existing studies have concentrated on regular waves, thereby excluding the flow and turbulence dynamics occurring at wave group time-scales under irregular waves within the surf zone. These limitations motivated a new experiment in the large-scale CIEM wave flume in Barcelona involving regular and irregular waves. The experiment was conducted in May-July 2017 within the HYDRALAB+ Transnational Access project HYBRID.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 460
Author(s):  
Takvor H. Soukissian ◽  
Flora E. Karathanasi

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.


Author(s):  
Qingyang Song ◽  
Hidenori Aiki

AbstractIntraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30 days, 50 days and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30-day and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally-trapped Kelvin waves along the African coast are identified by along-shore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.


2020 ◽  
Vol 50 (2) ◽  
pp. 531-534
Author(s):  
Theodore S. Durland ◽  
J. Thomas Farrar

AbstractLonguet-Higgins in 1964 first pointed out that the Rossby wave energy flux as defined by the pressure work is not the same as that defined by the group velocity. The two definitions provide answers that differ by a nondivergent vector. Longuet-Higgins suggested that the problem arose from ambiguity in the definition of energy flux, which only impacts the energy equation through its divergence. Numerous authors have addressed this issue from various perspectives, and we offer one more approach that we feel is more succinct than previous ones, both mathematically and conceptually. We follow the work described by Cai and Huang in 2013 in concluding that there is no need to invoke the ambiguity offered by Longuet-Higgins. By working directly from the shallow-water equations (as opposed to the more involved quasigeostrophic treatment of Cai and Huang), we provide a concise derivation of the nondivergent pressure work and demonstrate that the two energy flux definitions are equivalent when only the divergent part of the pressure work is considered. The difference vector comes from the nondivergent part of the geostrophic pressure work, and the familiar westward component of the Rossby wave group velocity comes from the divergent part of the geostrophic pressure work. In a broadband wave field, the expression for energy flux in terms of a single group velocity is no longer meaningful, but the expression for energy flux in terms of the divergent pressure work is still valid.


2012 ◽  
Vol 93 ◽  
pp. 364-370 ◽  
Author(s):  
P. Pinson ◽  
G. Reikard ◽  
J.-R. Bidlot

Sign in / Sign up

Export Citation Format

Share Document