scholarly journals A NUMERICAL MODEL FOR THE EFFICIENT SIMULATION OF MULTIPLE LANDSLIDE-TSUNAMI SCENARIOS

Author(s):  
Verdiana Iorio ◽  
Giorgio Bellotti ◽  
Claudia Cecioni ◽  
Stephan Grilli

Submarine landslides can pose serious tsunami hazard to coastal communities, occurring frequently near the coast itself. The properties of the tsunami and the consequent inundation depend on many factors, such as the geometry, the rheology and the kinematic of the landslide and the local bathymetry. However, when evaluating the risk related to landslide tsunamis, it is very difficult to accurately predict all of the above mentioned parameters. It is therefore useful to carry out many simulations of tsunami generation and propagation, with reference to different landslide scenarios, in order to deal with such uncertainties (see for example the probabilistic approach by Grilli et al. 2009). Accurate computations of landslide tsunami generation, propagation, and inundation, however, is computationally expensive, thus limiting the possible maximum number of scenarios. To partially overcome this difficulty, in the present research, a numerical model is proposed that can efficiently compute a large number of tsunami simulations triggered by different landslides. The main goal is to provide a numerical tool that can be used in a Monte Carlo approach framework. Following the study by Ward (2001), we propose a methodology taking advantage of the linear superposition of elementary tsunami solutions.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/uYOvdsutmBw

2010 ◽  
Vol 10 (3) ◽  
pp. 589-604 ◽  
Author(s):  
S. Brune ◽  
A. Y. Babeyko ◽  
S. Ladage ◽  
S. V. Sobolev

Abstract. The Indonesian archipelago is known for the occurrence of catastrophic earthquake-generated tsunamis along the Sunda Arc. The tsunami hazard associated with submarine landslides however has not been fully addressed. In this paper, we compile the known tsunamigenic events where landslide involvement is certain and summarize the properties of published landslides that were identified with geophysical methods. We depict novel mass movements, found in newly available bathymetry, and determine their key parameters. Using numerical modeling, we compute possible tsunami scenarios. Furthermore, we propose a way of identifying landslide tsunamis using an array of few buoys with bottom pressure units.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2033 ◽  
Author(s):  
Guodong Li ◽  
Guoding Chen ◽  
Pengfeng Li ◽  
Haixiao Jing

High-speed and accurate simulations of landslide-generated tsunamis are of great importance for the understanding of generation and propagation of water waves and for prediction of these natural disasters. A three-dimensional numerical model, based on Reynolds-averaged Navier–Stokes equations, is developed to simulate the landslide-generated tsunami. Available experiment data is used to validate the numerical model and to investigate the scale effect of numerical model according to the Froude similarity criterion. Based on grid convergence index (GCI) analysis, fourteen cases are arranged to study the sensitivity of numerical results to mesh resolution. Results show that numerical results are more sensitive to mesh resolution in near field than that in the propagation field. Nonuniform meshes can be used to balance the computational efficiency and accuracy. A mesh generation strategy is proposed and validated, achieving an accurate prediction and nearly 22 times reduction of computational cost. Further, this strategy of mesh generation is applied to simulate the Laxiwa Reservoir landslide tsunami. The results of this study provide an important guide for the establishment of a numerical model of the real-world problem of landslide tsunami.


Author(s):  
Guan-Yu Chen ◽  
Chin-Chih Liu ◽  
Janaka J. Wijetunge ◽  
Yi-Fung Wang

Abstract. Although tsunamis generated by submarine mass failure are not as common as those induced by submarine earthquakes, sometimes the generated tsunamis are higher than a seismic tsunami in the area close to the tsunami source, and the forecast is much more difficult. In the present study, reciprocal Green's functions are proposed as a useful tool in the forecast of submarine landslide tsunamis. The forcing of the continuity equation due to depth change in a landslide is represented by the temporal derivative of the water depth. After a convolution with the reciprocal Green's function, the tsunami waveform can be obtained promptly. Thus, various tsunami scenarios can be considered once a submarine landslide happens, and a useful forecast can be formulated. When a submarine landslide occurs, the various possibilities for tsunami generation can be analyzed, and a useful forecast can be devised.


Landslides ◽  
2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

AbstractThe accurate prediction of landslide tsunami amplitudes has been a challenging task given large uncertainties associated with landslide parameters and often the lack of enough information of geological and rheological characteristics. In this context, physical modelling and empirical equations have been instrumental in developing landslide tsunami science and engineering. This study is focused on developing a new empirical equation for estimating the maximum initial landslide tsunami amplitude for solid-block submarine mass movements. We are motivated by the fact that the predictions made by existing equations were divided by a few orders of magnitude (10−1–104 m). Here, we restrict ourselves to three main landslide parameters while deriving the new predictive equation: initial submergence depth, landslide volume and slope angle. Both laboratory and field data are used to derive the new empirical equation. As existing laboratory data was not comprehensive, we conduct laboratory experiments to produce new data. By applying the genetic algorithm approach and considering non-dimensional parameters, we develop and examine 14 empirical equations for the non-dimensional form of the maximum initial tsunami amplitude. The normalized root mean square error (NRMSE) index between observations and calculations is used to choose the best equation. Our proposed empirical equation successfully reproduces both laboratory and field data. This equation can be used to provide a preliminary and rapid estimate of the potential hazards associated with submarine landslides using limited landslide parameters.


2011 ◽  
Vol 1 (32) ◽  
pp. 28 ◽  
Author(s):  
Barak Galanti ◽  
Sergiu Dov Rosen ◽  
Amos Salamon

This poster paper presents first the a tsunami modelling investigation using the state of the art, open source tsunami model (GeoClaw), its adaptation to investigate the impact of tsunami wave generation, propagation and inundation at the Mediterranean coast of Israel using high resolution bathymetric and topographic grid , aided by additional tsunami generation modelling tools simulating the initial stages of tsunami generation by earthquake induced tectonic plates rupture and movement or by landslide on the coastal shelf, as well as visualization tools, adapted by the first author under LINUX operating system as an integral modelling package.


2020 ◽  
Vol 10 (19) ◽  
pp. 6872
Author(s):  
Thi-Hong-Nhi Vuong ◽  
Tso-Ren Wu ◽  
Chun-Yu Wang ◽  
Chia-Ren Chu

This paper incorporates the Bingham rheology model with the Navier–Stokes solver to simulate the tsunamis excited by a slump-type landslide. The slump is modeled as the Bingham material, in which the rheological properties changing from the un-yield phase to yield phase is taken into account. The volume of fluid method is used to track the interfaces between three materials: air, water, and slump. The developed model is validated by the laboratory data of the benchmark landslide tsunami problem. A series of rheological properties analyses is performed to identify the parameter sensitivity to the tsunami generation. The results show that the yield stress plays a more important role than the yield viscosity in terms of the slump kinematics and tsunami generation. Moreover, the scale effect is investigated under the criterion of Froude number similarity and Bingham number similarity. With the same Froude number and Bingham number, the result from the laboratory scale can be applied to the field scale. If the slump material collected in the field is used in the laboratory experiments, only the result of the maximum wave height can be used, and significant errors in slump shape and moving speed are expected.


Ocean Science ◽  
2015 ◽  
Vol 11 (4) ◽  
pp. 643-655 ◽  
Author(s):  
A. G. Samaras ◽  
Th. V. Karambas ◽  
R. Archetti

Abstract. In the present work, an advanced tsunami generation, propagation and coastal inundation 2-DH model (i.e. 2-D Horizontal model) based on the higher-order Boussinesq equations – developed by the authors – is applied to simulate representative earthquake-induced tsunami scenarios in the Eastern Mediterranean. Two areas of interest were selected after evaluating tsunamigenic zones and possible sources in the region: one at the southwest of the island of Crete in Greece and one at the east of the island of Sicily in Italy. Model results are presented in the form of extreme water elevation maps, sequences of snapshots of water elevation during the propagation of the tsunamis, and inundation maps of the studied low-lying coastal areas. This work marks one of the first successful applications of a fully nonlinear model for the 2-DH simulation of tsunami-induced coastal inundation; acquired results are indicative of the model's capabilities, as well of how areas in the Eastern Mediterranean would be affected by eventual larger events.


Sign in / Sign up

Export Citation Format

Share Document