scholarly journals Modeling the Slump-Type Landslide Tsunamis Part II: Numerical Simulation of Tsunamis with Bingham Landslide Model

2020 ◽  
Vol 10 (19) ◽  
pp. 6872
Author(s):  
Thi-Hong-Nhi Vuong ◽  
Tso-Ren Wu ◽  
Chun-Yu Wang ◽  
Chia-Ren Chu

This paper incorporates the Bingham rheology model with the Navier–Stokes solver to simulate the tsunamis excited by a slump-type landslide. The slump is modeled as the Bingham material, in which the rheological properties changing from the un-yield phase to yield phase is taken into account. The volume of fluid method is used to track the interfaces between three materials: air, water, and slump. The developed model is validated by the laboratory data of the benchmark landslide tsunami problem. A series of rheological properties analyses is performed to identify the parameter sensitivity to the tsunami generation. The results show that the yield stress plays a more important role than the yield viscosity in terms of the slump kinematics and tsunami generation. Moreover, the scale effect is investigated under the criterion of Froude number similarity and Bingham number similarity. With the same Froude number and Bingham number, the result from the laboratory scale can be applied to the field scale. If the slump material collected in the field is used in the laboratory experiments, only the result of the maximum wave height can be used, and significant errors in slump shape and moving speed are expected.

Author(s):  
F. Løvholt ◽  
G. Pedersen ◽  
C. B. Harbitz ◽  
S. Glimsdal ◽  
J. Kim

This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation.


2018 ◽  
Vol 203 ◽  
pp. 01003
Author(s):  
Raidan Maqtan ◽  
Badronnisa Yusuf ◽  
Saiful Bahri Hamzah

many of the post tsunami field surveys which conducted by researchers revealed that, the failure due to scour at the landward toe of the seawall due to overtopping of tsunami wave forms one of the important types of coastal defence structures failure and constitutes one of the biggest threats to their structural performance. This study was intended to investigates the scour profile induced by tsunami bores at the landward toe of the vertical seawall and to discuss the effects of the parameters; tide level, incident bore Froude number Fb, incident bore height Hb, overtopping flow Froude number Fo, and overtopping flow depth Ho on the maximum scour depth induced at the landward toe of the seawall. A set of laboratory experiments were conducted at National Hydraulic Research Institute of Malaysia (NAHRIM) with the tichnique of dam break to generate the bore like tsunami. The experiments showed that the initial water level upstream of the seawall has a significant effect on the scour profile and there is a strong negative relationship exists with Froude number of the incident bore and a strong positive relationship exists with Froude number of the overtopping flow depth above the crest of the seawall.


2009 ◽  
Vol 25 (1) ◽  
pp. 129-136 ◽  
Author(s):  
C.-D. Jan ◽  
C.-J. Chang ◽  
J.-S. Lai ◽  
W.-D. Guo

AbstractThis paper presents the experimental results of the characteristics of hydraulic shock waves in an inclined chute contraction with consideration of the effects of sidewall deflection angle φ, bottom inclination angle θ and approach Froude number Fr0. Seventeen runs of laboratory experiments were conducted in the range of 27.45° ≤φ ≤ 40.17°, 6.22° ≤ θ ≤ 25.38° and 1.04 ≤ Fr0 ≤ 3.51. Based on the experimental data, three empirical dimensionless relations for the shock angle, maximum shockwave height, and corresponding position of maximum shockwave were obtained by regression analyses, respectively. These empirical relations would be useful for hydraulic engineers in designing chute contraction structures.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012120
Author(s):  
E I Mikhienkova ◽  
A V Minakov ◽  
A V Matveev ◽  
S V Lysakov

Abstract A systematic study of the effect of nanoparticles of various concentrations and sizes on the rheological properties of various oil-based drilling fluids with nanoparticle additives has been carried out. The concentration of nanoparticles in drilling emulsions varied from 0.25 to 2 wt%, and the average size of nanoparticles ranged from 18 to 100 nm. As a result of numerous laboratory experiments, formulations and technology for the preparation of stable oil-based drilling fluids with additives of nanoparticles have been developed. The effect of nanoparticles on the viscosity and rheological properties of these drilling fluids has been studied.


2021 ◽  
Author(s):  
Juan Manuel Leon ◽  
Shehadeh K. Masalmeh ◽  
Siqing Xu ◽  
Ali M. AlSumaiti ◽  
Ahmed A. BinAmro ◽  
...  

Abstract Assessing polymer injectivity for EOR field applications is highly important and challenging. An excessive injectivity reduction during and after polymer injection may potentially affect the well integrity and recovery efficiency and consequently, injection strategy and the economics of the polymer projects. Moreover, well conditions such as skin, completion configuration, and injection water quality can significantly impact polymer injectivity. Additionally, the presence of fractures or micro-fractures may govern injection pressure. In contrast, historic field applications have shown that polymer injectivity is in general better than expected from simulations or laboratory data. In the laboratory experiments, the polymer injectivity has been evaluated by injection of significant amounts of pore volumes of polymer at relevant well-injection rates. In addition, several experiments were performed to measure the complex in-situ rheology expected to dominate the flow near the wellbore This paper presents the analysis of the the world's first polymer injectivity test (PIT) conducted in a high temperature and high salinity (HTHS) carbonate reservoir in Abu Dhabi as part of a comprehensive de-risking program for a new polymer-based EOR scheme proposed by ADNOC for these challenging carbonate reservoirs (see Masalmeh et. al., 2014). The de-risking program includes an extensive laboratory experimental program and field injectivity test to ensure that the identified polymer can be injected and propagated in the target formation before multi-well pilot and full-field implementation stages. Experimental laboratory data and the field injectivity test results are presented in earlier publications (Masalmeh et. al., 2019; Rachapudi et. al., 2020) and references therein. This PIT is the world's first polymer injectivity test in a carbonate reservoir under such harsh conditions of high salinity, high content of divalent ions and high temperature. In addition, the polymer used during the test has never been field-tested before. Therefore, the results of the PIT interpretation will help to de-risk the suitable polymer for the future inter-well pilot for the new proposed EOR Polymer-based scheme and it is a game-changer to unlock several opportunities for different Chemical EOR applications on full-field scale in other reservoirs with similar characteristics. A single well radial simulation model was built to integrate the surveillance data during PIT and the extensive laboratory experiments. Morever, multiple Pressure Fall Off Tests (PFOs) during the same periods were analyzed and intergaretd in the model.The study assessed the effect of polymer viscosity on mobility reduction, evaluated the polymer bank propagation, investigated the effect of the skin build-up, residual resistance factor (RRF) and shear effects on the well injectivity. Additionally, a comprehensive assisted history match method and robust simulation sensitivity analysis was implemented, thousands of sensitivity simulation runs were performed to capture several possible injection scenarios and validate laboratory parameters. The simulation study confirmed that the PIT could be interpreted using the laboratory-measured polymer parameters such as polymer bulk viscosity, in-situ rheology, RRF and adsorption.


2020 ◽  
Vol 10 (18) ◽  
pp. 6501 ◽  
Author(s):  
Tso-Ren Wu ◽  
Thi-Hong-Nhi Vuong ◽  
Chun-Wei Lin ◽  
Chun-Yu Wang ◽  
Chia-Ren Chu

This paper incorperates Bingham and bi-viscosity rheology models with the Navier–Stokes solver to simulate the dynamics and kinematics processes of slumps for tsunami generation. The rheology models are integrated into a computational fluid dynamics code, Splash3D, to solve the incompressible Navier–Stokes equations with volume of fluid surface tracking algorithm. The change between un-yield and yield phases of the slide material is controlled by the yield stress and yield strain rate in Bingham and bi-viscosity models, respectively. The integrated model is carefully validated by the theoretical results and laboratory data with good agreements. This validated model is then used to simulate the benchmark problem of the failure of the gypsum tailings dam in East Texas in 1966. The accuracy of predicted flood distances simulated by both models is about 73% of the observation data. To improve the prediction, a fixed large viscosity is introduced to describe the un-yield behavior of tailings material. The yield strain rate is obtained by comparing the simulated inundation boundary to the field data. This modified bi-viscosity model improves not only the accuracy of the spreading distance to about 97% but also the accuracy of the spreading width. The un-yield region in the modified bi-viscosity model is sturdier than that described in the Bingham model. However, once the tailing material yields, the material returns to the Bingham property. This model can be used to simulate landslide tsunamis.


Author(s):  
Blake J. Landry ◽  
Yovanni A. Catan˜o-Lopera ◽  
Matthew J. Hancock ◽  
Chiang C. Mei ◽  
Marcelo H. Garci´a

Laboratory experiments analyzed herein focus on the validity of ripple predictors under spatially variable wave envelopes. Present-day ripple predictors commonly derived from laboratory data (for smaller wave periods of about 1 to 4 s) within which only small regions of the facilities were used to observe and measure the sand ripple geometric characteristics of the nearly progressive waves measured overhead. When extended to large sediment test sections, our results show that the predictors are still valid along the tank under wave conditions which have significant wave envelope spatial variation (e.g., standing waves), provided that ripple predictors use the wave measurements directly above the respective locations within the computations. Results indicate that even under the case of mild reflection, noticeable variation in ripple characteristics can be seen along the sediment test section; thus, compels the necessity of measuring the wave field along the entire sediment section to achieve accurate results.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. T123-T139
Author(s):  
Bence Solymosi ◽  
Nathalie Favretto-Cristini ◽  
Vadim Monteiller ◽  
Paul Cristini ◽  
Bjørn Ursin ◽  
...  

Laboratory experiments have been recently reintroduced into the ideas-to-applications pipeline for geophysical applications. Benefiting from recent technological advances, we believe that in the coming years, laboratory experiments can play a major role in supporting field experiments and numerical modeling, to explore some of the current challenges of seismic imaging in terms of, for instance, acquisition design or benchmarking of new imaging techniques at a low cost and in an agile way. But having confidence in the quality and accuracy of the experimental data obtained in a complex configuration, which mimics at a reduced scale a real geologic environment, is an essential prerequisite. This requires a robust framework regardless of the configuration studied. Our goal is to provide a global overview of this framework in the context of offshore seismics. To illustrate it, a reduced-scale model is used to represent a 3D complex-shaped salt body buried in sedimentary layers with curved surfaces. Zero-offset and offset reflection data are collected in a water tank, using a conventional pulse-echo technique. Then, a cross-validation approach is applied, which allows us, through comparison between experimental data and the numerical simulation, to point out some necessary future improvements of the laboratory setup to increase the accuracy of the experimental data, and the limitations of the numerical implementation that must also be tackled. Due to this approach, a hierarchical list of points can be collected, to which particular attention should be paid to make laboratory experiments an efficient tool in seismic exploration. Finally, the quality of the complex reduced-scale model and the global framework is successfully validated by applying reverse time migration to the laboratory data.


Sign in / Sign up

Export Citation Format

Share Document