scholarly journals Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production

Author(s):  
Аntonina A. Stepacheva ◽  
Valentin N. Sapunov ◽  
Esther M. Sulman M. Sulman ◽  
Linda Zh. Nikoshvili ◽  
Mikhail G. Sulman ◽  
...  

<p>This paper is devoted to the production of second generation biodiesel via catalytic hydrodeoxygenation of fatty acids. Pd/C catalysts with different metal loading were used. The palladium catalysts were characterized using low-temperature nitrogen physisorption and X-ray photoelectron spectroscopy. It was revealed that the most active and selective catalyst was 1%-Pd/C which allowed reaching up 97.5% of selectivity (regarding to n-heptadecane) at 100% conversion of substrate. Moreover, the chosen catalyst is more preferable according to lower metal content that leads the decrease of the process cost. The analysis of the catalysts showed that 1%-Pd/C had the highest specific surface area compared with 5%-Pd/C. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 31<sup>st</sup> July 2015; Revised: 9<sup>th</sup> December 2015; Accepted: 30<sup>th</sup> December 2015</em></p><p><strong>How to Cite</strong>: Stepacheva, A.A., Sapunov, V.N., Sulman, E.M., Nikoshvili, L.Z., Sulman, M.G., Sidorov, A.I., Demidenko, G.N., Matveeva, V.G. (2016). Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 125-132 (doi:10.9767/bcrec.11.2.538.125-132)</p><p><strong>Permalink/DOI</strong>: http://dx.doi.org/10.9767/bcrec.11.2.538.125-132</p>

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosińska ◽  
Lukasz Szkudlarek ◽  
Karolina Chalupka ◽  
Misa Tatsuzawa ◽  
...  

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.


IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Aroa Morán-Ruiz ◽  
Aritza Wain-Martin ◽  
Alodia Orera ◽  
María Luisa Sanjuán ◽  
Aitor Larrañaga ◽  
...  

The first fluorination of the cuspidine-related phases of Ln4(Al2O7□)O2 (where Ln = Sm, Eu, Gd) is reported. A low-temperature reaction with poly(vinylidene difluoride) lead to the fluorine being substituted in place of oxygen and inserted into the vacant position between the dialuminate groups. X-ray photoelectron spectroscopy shows the presence of the F 1s photoelectron together with an increase in Al 2p and rare-earth 4d binding energies supporting F incorporation. Energy-dispersive X-ray spectroscopy analyses are consistent with the formula Ln4(Al2O6F2)O2, confirming that substitution of one oxygen by two fluoride atoms has been achieved. Rietveld refinements show an expansion in the cell upon fluorination and confirm that the incorporation of fluoride in the Ln4(Al2O7□)O2 structure results in changes in Al coordination from four to five. Thus, the isolated tetrahedral dialuminate Al2O7 groups are converted to chains of distorted square-based pyramids. These structural results are also discussed based on Raman spectra.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Long Lu ◽  
Xueman Wang ◽  
Chunhua Hu ◽  
Ying Liu ◽  
Xiongbo Chen ◽  
...  

Nanosized V-Ce oxides supported on TiO2 (VCT) were prepared and utilized in the low-temperature selective catalytic reduction (SCR) of NO with NH3. Compared with the other V-Ce oxides-based catalysts supported on Al2O3, ZrO2, and ZSM-5, VCT showed the best SCR activity in a low-temperature range. The NOx conversion of 90% could be achieved at 220 °C. Characterizations including X-ray diffraction (XRD), scanning election micrograph (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption with NH3 (NH3-TPD), and temperature-programmed reduction with H2 (H2-TPR) showed that V1.05Ce1/TiO2 exhibited a good dispersion of V2O5, enrichment of surface Ce3+ and chemical-absorbed oxygen, and excellent redox capacity and acidity, which resulted in the best SCR performance at low temperature.


2000 ◽  
Vol 611 ◽  
Author(s):  
Akira Izumi ◽  
Hidekazu Sato ◽  
Hideki Matsumura

ABSTRACTThis paper reports a procedure for low-temperature nitridation of silicon dioxide (SiO2) surfaces using species produced by catalytic decomposition of NH3 on heated tungsten in catalytic chemical vapor deposition (Cat-CVD) system. The surface of SiO2/Si(100) was nitrided at temperatures as low as 200°C. X-ray photoelectron spectroscopy measurements revealed that incorporated N atoms are bound to Si atoms and O atoms and located top-surface of SiO2.


1995 ◽  
Vol 387 ◽  
Author(s):  
Po-ching Chen ◽  
Klaus Yung-jane Hsu ◽  
Joseph J. Loferski ◽  
Huey-liang Hwang

AbstractMicrowave afterglow plasma oxidation at a low temperature (600 °C ) and rapid thermal annealing (RTA) were combined to grow high quality ultra-thin dielectrics. This new approach has a low thermal budget. The mid-gap interface state density of oxides pretreated in N2O plasma was decreased to about 5×1010 cm−2eV−1 after rapid thermal annealing at 950 °C.It was found that RTA is very effective for relieving the oxide stress and reducing the interface state density. Nitrogen incorporated in oxides by the N2O plasma pretreatment of the Si surface helped to reduce the interface state density. Microstructures of ultra-thin oxide grown by microwave afterglow oxidation with or without RTA were revealed by extended-X-ray-absorption-finestructure (EXAFS) and X-ray photoelectron spectroscopy (XPS) analysis.


2013 ◽  
Vol 4 ◽  
pp. 111-128 ◽  
Author(s):  
Lu-Cun Wang ◽  
Yi Zhong ◽  
Haijun Jin ◽  
Daniel Widmann ◽  
Jörg Weissmüller ◽  
...  

The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure–activity correlations) and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG) samples prepared from different Au alloys (AuAg, AuCu) by selective leaching of a less noble metal (Ag, Cu) were employed, whose structure (surface area, ligament size) as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic behavior was evaluated by kinetic measurements in a conventional microreactor and by dynamic measurements in a temporal analysis of products (TAP) reactor. The data reveal a clear influence of the surface contents of residual Ag and Cu species on both O2 activation and catalytic activity, while correlations between activity and structural parameters such as surface area or ligament/crystallite size are less evident. Consequences for the mechanistic understanding and the role of the nanostructure in these NPG catalysts are discussed.


Author(s):  
M. B. J. Wijesundara ◽  
D. C. Walther ◽  
C. R. Stoldt ◽  
K. Fu ◽  
D. Gao ◽  
...  

The unique operating conditions of micro-thermochemical systems introduce many materials compatibility issues that must be addressed, particularly where thin film coatings are concerned. These issues include oxidation, wear, friction, and thermal stability. This work aims to explore the effectiveness of polycrystalline 3C-SiC films deposited by low temperature chemical vapor deposition on silicon substrates as a means for the remediation of these effects. The chemical structure of the deposited films is examined by X-ray photoelectron spectroscopy and X-ray diffraction techniques. Surface physical characteristics are evaluated by atomic force microcopy as well as by scanning electron microscopy. The structural makeup of these films is characterized both optically and by the sample’s resistance to chemical etching. These barrier films are found to conformally deposit and can therefore be used to coat substrates or individual components, as well as to create highly environmentally resistant sensor elements. Samples are exposed to both a non-reactive flow high temperature source and reactive flow condition (H2–air flame) to determine their survivability. The SiC films are shown to possess a relatively high oxidation resistance when compared to Si.


1984 ◽  
Vol 32 ◽  
Author(s):  
R. K. Brow ◽  
C. G. Pantano

ABSTRACTSol/gel derived silica thin films were thermally treated in NH3 for four hours at temperatures up to 1300C. The films were analyzed by ellipsometry, X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR). Over 30 mol% nitrogen was incorporated in the film treated at 1300C. Using IR and XPS analyses, -NHx groups were found to be present after low temperature treatments, while nitrogen was incorporated in an oxynitride structure after the higher temperature treatments.


Author(s):  
Atsushi Mukunoki ◽  
Tamotsu Chiba ◽  
Yasuhiro Suzuki ◽  
Kenji Yamaguchi ◽  
Tomofumi Sakuragi ◽  
...  

The authors describe progress in the development of low temperature vitrification with BiPbO2I (BPI) as a promising immobilization technique by which Iodine-129 is recovered by BiPbO2NO3 to form BPI, and then solidified into a lead-boron-zinc glass matrix (PbO-B2O3-ZnO) using a low temperature vitrification process. The microscopic structure of BPI glass was analyzed by various analytical techniques, such as XRD (X-ray diffraction), NMR (nuclear magnetic resonance analysis), and XPS (X-ray photoelectron spectroscopy), using several types of glass samples. The results obtained provide structural information on key elements in BPI glass and can be applied for modeling the structure of the BPI glass, simulated by molecular dynamics. The previous work suggested that the leaching behavior of iodine from BPI glass depended upon the chemical conditions of the solution. Further leaching tests using solutions under varying conditions were carried out in order to predict mechanisms of iodine leaching. Normalized elemental mass loss values of iodine in simulated seawater and bentonite pore water are almost the same as those of boron, showing that iodine dissolves congruently with BPI glass, whereas iodine dissolves incongruently in Ca(OH)2 solutions of pH 9 and 11. To demonstrate the feasibility of the BPI vitrification process, recovery tests of iodine from spent iodine filters were conducted and a prototype melting furnace was developed for scale-up tests of glass sample. It was found that more than 95% of iodine can be recovered from the spent iodine filter and that the prototype furnace can produce approximately 0.5 liters of homogeneous glass.


Sign in / Sign up

Export Citation Format

Share Document