scholarly journals Synthesis of new Ln4(Al2O6F2)O2 (Ln = Sm, Eu, Gd) phases with a cuspidine-related structure

IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Aroa Morán-Ruiz ◽  
Aritza Wain-Martin ◽  
Alodia Orera ◽  
María Luisa Sanjuán ◽  
Aitor Larrañaga ◽  
...  

The first fluorination of the cuspidine-related phases of Ln4(Al2O7□)O2 (where Ln = Sm, Eu, Gd) is reported. A low-temperature reaction with poly(vinylidene difluoride) lead to the fluorine being substituted in place of oxygen and inserted into the vacant position between the dialuminate groups. X-ray photoelectron spectroscopy shows the presence of the F 1s photoelectron together with an increase in Al 2p and rare-earth 4d binding energies supporting F incorporation. Energy-dispersive X-ray spectroscopy analyses are consistent with the formula Ln4(Al2O6F2)O2, confirming that substitution of one oxygen by two fluoride atoms has been achieved. Rietveld refinements show an expansion in the cell upon fluorination and confirm that the incorporation of fluoride in the Ln4(Al2O7□)O2 structure results in changes in Al coordination from four to five. Thus, the isolated tetrahedral dialuminate Al2O7 groups are converted to chains of distorted square-based pyramids. These structural results are also discussed based on Raman spectra.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Srihasam Saiganesh ◽  
Thyagarajan Krishnan ◽  
Golla Narasimha ◽  
Hesham S. Almoallim ◽  
Sulaiman Ali Alhari ◽  
...  

Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies.


2020 ◽  
Vol 9 (1) ◽  
pp. 734-743
Author(s):  
Ran Zhao ◽  
ZiChen Tian ◽  
Zengwu Zhao

AbstractBayan Obo tailings are rich in rare earth elements (REEs), iron, and other catalytic active substances. In this study, mine tailings were calcined at different temperatures and tested for the catalytic combustion of low-concentration methane. Upon calcination at 600°C, high catalytic activity was revealed, with 50% CH4 conversion at 587°C (space velocity of 12,000 mL/g h). The physicochemical properties of catalysts were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). Compared to the raw ore sample, the diffraction peak intensity of Fe2O3 increased post calcination, whereas that of CeCO3F decreased. A porous structure appeared after the catalyst was calcined at 600°C. Additionally, Fe, Ce, Ti, and other metal elements were more highly dispersed on the catalyst surface. H2-TPR results revealed a broadening of the reduction temperature range for the catalyst calcined at 600°C and an increase in the reduction peak. XPS analysis indicated the presence of Ce in the form of Ce3+ and Ce4+ oxidation states and the coexistence of Fe in the form of Fe2+ and Fe3+. Moreover, XPS revealed a higher surface Oads/Olatt ratio. This study provides evidence for the green reuse of Bayan Obo mine tailings in secondary resources.


2001 ◽  
Vol 702 ◽  
Author(s):  
Giovanni F Crosta ◽  
Art J Nelson ◽  
Marina C Camatini

ABSTRACTThree types of debris particles, denoted by L2, H2 and K3 respectively, originated from the abrasion of silica-filled, vulcanized rubber under different test conditions (severity) were analyzed and compared. The structural fractal dimension, DFS, of the particle perimeter was chosen as a morphological descriptor (but not necessarily as an intrinsic property of the fractured material !). Said dimension was estimated by processing light microscopy images. A value of the morphological threshold, TST, which separates the textural from the structural domain in the RICHARDSON plot was determined in order to maximize discrimination between the three particle types and rank them by increasing values of DFS. Particles from the highest severity test (K3) exhibited the highest value of DFS. X ray photoelectron spectroscopy (XPS) provided elemental composition, core level binding energies and the speciation of C, N, O, Si and S. As a result, L2 debris was found to originate from two processes: fracture of rubber and segregation of extender oil. Evidence has come both from morphology and XPS. Particles of H2 and K3 were ascribed to fracture alone. Comparison between K3 and the reference material, rasped rubber (RAS), shows the following: a) increase of the [S]/[C] surface atomic concentration ratio from RAS to K3; b) existence of multiple bonding states of S in K3 with energy peaking at 162.9 ± 0.3 eV ([-S-S-]n); c) weak contribution of R-S-O-R oxidized S species in K3 at 165 eV, not seen in RAS; d) no evidence of either SO3 or SO4 groups in any material. Although preliminary, these results prove the ability of morphological analysis and XPS to characterize the surface properties of debris particles non destructively.


2022 ◽  
Vol 905 ◽  
pp. 192-197
Author(s):  
Lin Lin Cai ◽  
Xiao Qing Jiang

A new composite of graphene/MoS2 is synthesized by co-exfoliation of graphite and MoS2 in isopropanol (IPA) using the organic salt potassium sodium tartrate as the assistant. The composite is characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The results of TEM, XPS, and Raman spectra all illustrate that the graphene/MoS2 composite has been synthesized successfully. Furthermore, the composite is modified on glassy carbon electrode to fabricate a sensor to detect dopamine (DA). The sensor shows two linear detection ranges for DA. One is 1-45 μM and the other is 45-120 μΜ. The detection limit of the sensor (S/N=3) is 0.76 μM.


Author(s):  
Sahadeb Ghosh ◽  
Mangala Nand ◽  
Rajiv Kamparath ◽  
Mukul Gupta ◽  
Devdatta M Phase ◽  
...  

Abstract Oriented thin films of β-(Ga1-xFex)2O3 have been deposited by RF magnetron sputtering on c-Al2O3 and GaN substrates. The itinerant character of Fe 3d states forming the top of the valence band (VB) of Fe substituted of β-Ga2O3 thin films has been determined from resonant photoelectron spectroscopy (RPES). Further, admixture of itinerant and localized character of these Fe 3d sates is obtained for larger binding energies i.e deeper of VB. The bottom of the conduction band (CB) for β-(Ga1-xFex)2O3 is also found to be strongly hybridized states involving Fe 3d and O 2p states as compared to that of Ga 4s in pristine β-Ga2O3. This suggests that β-Ga2O3 transforms from band like system to a charge transfer system with Fe substitution. Furthermore, the bandgap red shits with Fe composition, which has been found to be primarily related to the shift of the CB edge.


2018 ◽  
Vol 20 (13) ◽  
pp. 8403-8410 ◽  
Author(s):  
Francesc Viñes ◽  
Carmen Sousa ◽  
Francesc Illas

Core level binding energies, measured by X-ray photoelectron spectroscopy providing unique information regarding the chemical environment of atoms in a system, can be estimated by a diversity of state-of-the-art accurate methods here detailed.


2022 ◽  
pp. 108818
Author(s):  
Elhadji Cheikh Talibouya Ba ◽  
Marcello Rosa Dumont ◽  
Paulo Sérgio Martins ◽  
Bárbara da Silva Pinheiro ◽  
Matheus Philippe Martins da Cruz ◽  
...  

Clay Minerals ◽  
1982 ◽  
Vol 17 (4) ◽  
pp. 477-481 ◽  
Author(s):  
S. Evans ◽  
E. Raftery

It is usually assumed that the oxidation state of the small proportion of Mn sometimes present in micas is +2, although there is evidence from electronic spectroscopy (Burns, 1970) for at least the occasional occurrence of Mn(III) in manganophyllite. We describe here X-ray photoelectron spectroscopic (XPS) measurements on the Mn in a Norwegian lepidolite which was the subject of a concurrent structural study by X-ray photoelectron diffraction (Evans & Raftery, 1982). To establish the Mn oxidation state we have compared the Mn2p core-electron binding energies (BE), the Mn2P3/2-O ls BE differences, and the Mn2p XPS peak profiles from the four common oxides of manganese (MnO, Mn3O4, Mn2O3 and MnO2) with those from the lepidolite. A re-examination of these oxides was undertaken because the agreement between reports in the literature was unsatisfactory, and uncertainty existed concerning the integrity of some of the surfaces previously examined.


Sign in / Sign up

Export Citation Format

Share Document