scholarly journals Totally-green Fuels via CO2 Hydrogenation

2020 ◽  
Vol 15 (2) ◽  
pp. 390-404
Author(s):  
Lorenzo Spadaro ◽  
Alessandra Palella ◽  
Francesco Arena

Hydrogen is the cleanest energy vector among any fuels, nevertheless, many aspects related to its distribution and storage still raise serious questions concerning costs, infrastructure and safety. On this account, the chemical storage of renewable-hydrogen by conversion into green-fuels, such as: methanol, via CO2 hydrogenation assumes a role of primary importance, also in the light of a cost-to-benefit analysis. Therefore, this paper investigates the effects of chemical composition on the structural properties, surface reactivity and catalytic pathway of ternary CuO-ZnO-CeO2 systems, shedding light on the structure-activity relationships. Thus, a series of CuZnCeO2 catalysts, at different CuO/CeO2 ratio (i.e. 0.2-1.2) were performed in the CO2 hydrogenation reactions at 20 bar and 200-300 °C, (GHSV of 4800 STP L∙kg∙cat-1∙h-1). Catalysts were characterized by several techniques including X-ray Diffraction (XRD), N2-physisorption, single-pulse N2O titrations, X-ray Photoelectron Spectroscopy (XPS), and Temperature-programmed Reduction with H2 (H2-TPR). Depending on preparation method, the results clearly diagnostics the occurrence of synergistic structural-electronic effects of cerium oxide on copper activity, with an optimal 0.5 copper-to-cerium content. The rise of CuO loading up to 30% drives to a considerable increase of hydrogenation activity: C2Z1-C catalyst obtains the best catalytic performance, reaching methanol yield value of 12% at 300 °C. Catalyst activity proceeds according to volcano-shaped relationships, in agreement with a dual sites mechanism. Copyright © 2020 BCREC Group. All rights reserved 

2017 ◽  
Vol 23 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Yajing Zhang ◽  
Yu Zhang ◽  
Fu Ding ◽  
Kangjun Wang ◽  
Wang Xiaolei ◽  
...  

A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD), N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR), ammonia temperature programmed desorption (NH3-TPD), and X-ray photoelectron spectroscopy (XPS) techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME) from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3%) and DME selectivity (57.3%) were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.


2021 ◽  
Vol 13 (3) ◽  
pp. 371-380
Author(s):  
Yongjun Wu ◽  
Nina Xie ◽  
Lu Yu

A novel Ag–Si–TiO2 composite was prepared via sol–gel method for removing residual formaldehyde in shiitake mushroom. The structure of Ag–Si–TiO2 composite was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. Ultraviolet-visible absorption spectroscopy (UV-Vis) and N2 adsorption-desorption tests showed that Ag and Si co-doped decreased the band gap, the Brunauer-Emmett-Teller (BET) specific surface area of the samples increased and the recombination probability of electron-hole pairs (e--h+) reduced. Effect on removal rate of formaldehyde with different Ag-Si co-doped content, formaldehyde concentration and solution pH were investigated, and the results showed that 6.0 wt%Ag-3.0 wt%Si-TiO2 samples had an optimum catalytic performance, and the degradation efficiency reached 96.6% after 40 W 365 nm UV lamp irradiation for 360 min. The kinetics of formaldehyde degradation by Ag–Si–TiO2 composite photocatalyst could be described by Langmuir-Hinshelwood first-order kinetic model.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 541 ◽  
Author(s):  
Haiping Xiao ◽  
Chaozong Dou ◽  
Hao Shi ◽  
Jinlin Ge ◽  
Li Cai

A series of poisoned catalysts with various forms and contents of sodium salts (Na2SO4 and Na2S2O7) were prepared using the wet impregnation method. The influence of sodium salts poisoned catalysts on SO2 oxidation and NO reduction was investigated. The chemical and physical features of the catalysts were characterized via NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The results showed that sodium salts poisoned catalysts led to a decrease in the denitration efficiency. The 3.6% Na2SO4 poisoned catalyst was the most severely deactivated with denitration efficiency of only 50.97% at 350 °C. The introduction of SO42− and S2O72− created new Brønsted acid sites, which facilitated the adsorption of NH3 and NO reduction. The sodium salts poisoned catalysts significantly increased the conversion of SO2–SO3. 3.6%Na2S2O7 poisoned catalyst had the strongest effect on SO2 oxidation and the catalyst achieved a maximum SO2–SO3-conversion of 1.44% at 410 °C. Characterization results showed sodium salts poisoned catalysts consumed the active ingredient and lowered the V4+/V5+ ratio, which suppressed catalytic performance. However, they increased the content of chemically adsorbed oxygen and the strength of V5+=O bonds, which promoted SO2 oxidation.


NANO ◽  
2021 ◽  
pp. 2150063
Author(s):  
Jungang Yi ◽  
Kun Wu ◽  
Huadong Wu ◽  
Jia Guo ◽  
Linfeng Zhang ◽  
...  

The presence of the antibiotics in the wastewater has posed a huge risk to aquatic life and human health. It is a great significance to develop an effective technology to treat the antibiotics-containing wastewater. In this study, a series of g-C3N4/NH2-MIL-88B(Fe) composite photocatalysts are synthesized through a simple one-step method. The structure and optical properties of prepared photocatalysts are detected by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectra (UV–Vis DRS), photoluminescence (PL) spectroscopy and transient photocurrent techniques, respectively. FESEM and TEM show that MOF is uniformly dispersed in petaloid g-C3N4. The uniform dispersion of Fe-MOFs in the heterojunction composites increases the specific surface area ([Formula: see text] of g-C3N4, which results in a great adsorption property for the nanocomposite. The capture experiment shows that [Formula: see text]O[Formula: see text] and h[Formula: see text] are the main active substances in ciprofloxacin (CIP) degradation. These prepared composite photocatalysts exhibit excellent CIP photodegradation activity under visibly light irradiation with an apparent rate constant of 0.0127[Formula: see text]min[Formula: see text] (3.74 times as the rate of single component). The remarkable catalytic performance can be ascribed to the fact that the g-C3N4/NH2-MIL-88B(Fe) heterojunction inhibits the recombination of photoinduced electron–hole pairs and improved the visible light absorption.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 589 ◽  
Author(s):  
Mingliang Ma ◽  
Yuying Yang ◽  
Yan Chen ◽  
Fei Wu ◽  
Wenting Li ◽  
...  

In this manuscript, hollow flower-like ferric oxide/manganese dioxide/trimanganese tetraoxide (Fe3O4/MnO2/Mn3O4) magnetically separable microspheres were prepared by combining a simple hydrothermal method and reduction method. As the MnO2 nanoflower working as precursor was partially reduced, Mn3O4 nanoparticles were in situ grown from the MnO2 nanosheet. The composite microspheres were characterized in detail by employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), vibration sample magnetometer (VSM) and UV–visible spectrophotometer (UV–vis). Under visible light conditions, the test for degrading rhodamine B (RhB) was used to verify the photocatalytic activity of the photocatalyst. The results showed that the efficiency of the Fe3O4/MnO2/Mn3O4 photocatalyst in visible light for 130 min is 94.5%. The catalytic activity of photocatalyst far exceeded that of the Fe3O4/MnO2 component, and after four cycles, the catalytic performance of the catalyst remained at 78.4%. The superior properties of the photocatalyst came from improved surface area, enhanced light absorption, and efficient charge separation of the MnO2/Mn3O4 heterostructure. This study constructed a green and efficient valence heterostructure composite that created a promising photocatalyst for degrading organic contaminants in aqueous environments.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 11 ◽  
Author(s):  
Shahram Alijani ◽  
Sofia Capelli ◽  
Stefano Cattaneo ◽  
Marco Schiavoni ◽  
Claudio Evangelisti ◽  
...  

The catalytic performance of a series of 1 wt % Pd/C catalysts prepared by the sol-immobilization method has been studied in the liquid-phase hydrogenation of furfural. The temperature range studied was 25–75 °C, keeping the H2 pressure constant at 5 bar. The effect of the catalyst preparation using different capping agents containing oxygen or nitrogen groups was assessed. Polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and poly (diallyldimethylammonium chloride) (PDDA) were chosen. The catalysts were characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The characterization data suggest that the different capping agents affected the initial activity of the catalysts by adjusting the available Pd surface sites, without producing a significant change in the Pd particle size. The different activity of the three catalysts followed the trend: PdPVA/C > PdPDDA/C > PdPVP/C. In terms of selectivity to furfuryl alcohol, the opposite trend has been observed: PdPVP/C > PdPDDA/C > PdPVA/C. The different reactivity has been ascribed to the different shielding effect of the three ligands used; they influence the adsorption of the reactant on Pd active sites.


2019 ◽  
Vol 6 (9) ◽  
pp. 191019 ◽  
Author(s):  
Shang Wang ◽  
Zhaolian Han ◽  
Tingting Di ◽  
Rui Li ◽  
Siyuan Liu ◽  
...  

The pod-shaped TiO 2 nano burst tubes (TiO 2 NBTs) were prepared by the combination of electrospinning and impregnation calcination with oxalic acid (H 2 C 2 O 4 ), polystyrene (PS) and tetrabutyl titanate. The silver nanoparticles (AgNPs) were loaded onto the surface of TiO 2 NBTs by ultraviolet light reduction method to prepare pod-shaped Ag@TiO 2 NBTs. In this work, we analysed the effect of the amount of oxalic acid on the cracking degree of TiO 2 NBTs; the effect of the concentration of AgNO 3 solution on the particle size and loading of AgNPs on the surface of TiO 2 NBTs. Scanning electron microscopy and transmission electron microscopy investigated the surface morphology of samples. X-ray diffraction and X-ray photoelectron spectroscopy characterized the structure and composition of samples. Rhodamine B (RhB) solution was used to evaluate the photocatalytic activity of pod-shaped TiO 2 NBTs and Ag@TiO 2 NBTs. The results showed that TiO 2 NBTs degraded 91.0% of RhB under ultraviolet light, Ag@TiO 2 NBTs degraded 95.5% under visible light for 75 and 60 min, respectively. The degradation process of both samples was consistent with the Langmuir–Hinshelwood first-order kinetic equation. Therefore, the catalytic performance of the sample is: Ag@TiO 2 NBTs > TiO 2 NBTs > TiO 2 nanotubes.


2019 ◽  
Vol 12 (2) ◽  
pp. 2548-2554
Author(s):  
Yinjuan Ren ◽  
Chunyu Xin ◽  
Zhongkai Hao ◽  
Haicheng Sun ◽  
Steven L. Bernasek ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiuping Han ◽  
Binghua Yao ◽  
Keying Li ◽  
Wenjing Zhu ◽  
Xuyuan Zhang

The use of sunlight for photocatalytic oxidation is an ideal strategy, but it is limited by factors such as insufficient light absorption intensity of the photocatalyst and easy recombination of photogenerated electron holes. TiO2 is favored by researchers as an environment-friendly catalyst. In this paper, TiO2 is combined with WO3 to obtain a nanofiber with excellent catalytic performance under sunlight. The WO3/TiO2 composite nanofibers were synthesized by using the electrospinning method. The X-ray diffraction (XRD) analysis indicated that WO3 was successfully integrated onto the surface of TiO2. The photodegradation performance and photocurrent analysis of the prepared nanofibers showed that the addition of WO3 really improved the photocatalytic performance of TiO2 nanofibers, methylene blue (MB) degradation rate increased from 72% to 96%, and 5% was the optimal composite mole percentage of W to Ti. The scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectra (UV-Vis DRS), and Brunauer-Emmett-Teller (BET) analysis further characterized the properties of 5% WO3/TiO2 nanofibers. The H2 generation rate of 5% WO3/TiO2 nanofibers was 107.15 μmol·g−1·h−1, in comparison with that of TiO2 nanofibers (73.21 μmol·g−1·h−1) under the same condition. The 5% WO3/TiO2 produced ·OH under illumination, which played an important role in the MB degradation. Also, the enhanced photocatalytic mechanism was also proposed based on the detailed analysis of the band gap and the active species trapping experiment. The results indicated that the effective separation of Z-scheme photogenerated electron-hole pairs and transfer system constructed between TiO2 and WO3 endowed the excellent photocatalytic activity of 5% WO3/TiO2 nanofibers.


2019 ◽  
Vol 79 (9) ◽  
pp. 1675-1684 ◽  
Author(s):  
Guang Xian ◽  
Nan Zhang ◽  
Guangming Zhang ◽  
Yi Zhang ◽  
Zhiguo Zou

Abstract FeNiCeOx was firstly prepared by ultrasonic impregnation method and used to remove diclofenac in a Fenton-like system. The catalytic activity was improved successfully by doping Ni into FeCeOx. The diclofenac removal efficiency reached 97.9% after 30 min reaction. The surface morphology and properties of FeNiCeOx were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman and X-ray photoelectron spectroscopy (XPS) analyses. FeNiCeOx in this paper had larger specific surface area than those prepared by other methods, which was attributed to the cavitation effect and hot-spot effect during the ultrasonic synthesis process. Low crystallinity of Fe2O3 and NiO showed by characterization could lead to high interaction of Fe and Ni ions with support of CeO2. They substituted Ce in CeO2, caused lattice contraction and formed more oxygen vacancies, which favoured the catalytic reaction. Meanwhile, Fe and Ce ions both had redox cycles of Fe3+/Fe2+ and Ce4+/Ce3+, which facilitated the electron transfer in the reaction. The synergistic effect among Fe, Ni and Ce might lead to better catalytic performance of FeNiCeOx than any binary metal oxides constituted from the above three elements. Finally, the potential mechanism of diclofenac removal in FeNiCeOx-H2O2 system is proposed.


Sign in / Sign up

Export Citation Format

Share Document