Preparation of Novel Ag–Si–TiO2 Composite and Research on Its Photocatalytic Degradation of Formaldehyde

2021 ◽  
Vol 13 (3) ◽  
pp. 371-380
Author(s):  
Yongjun Wu ◽  
Nina Xie ◽  
Lu Yu

A novel Ag–Si–TiO2 composite was prepared via sol–gel method for removing residual formaldehyde in shiitake mushroom. The structure of Ag–Si–TiO2 composite was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. Ultraviolet-visible absorption spectroscopy (UV-Vis) and N2 adsorption-desorption tests showed that Ag and Si co-doped decreased the band gap, the Brunauer-Emmett-Teller (BET) specific surface area of the samples increased and the recombination probability of electron-hole pairs (e--h+) reduced. Effect on removal rate of formaldehyde with different Ag-Si co-doped content, formaldehyde concentration and solution pH were investigated, and the results showed that 6.0 wt%Ag-3.0 wt%Si-TiO2 samples had an optimum catalytic performance, and the degradation efficiency reached 96.6% after 40 W 365 nm UV lamp irradiation for 360 min. The kinetics of formaldehyde degradation by Ag–Si–TiO2 composite photocatalyst could be described by Langmuir-Hinshelwood first-order kinetic model.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kangqiang Huang ◽  
Li Chen ◽  
Jianwen Xiong ◽  
Meixiang Liao

The Fe-N co-doped TiO2nanocomposites were synthesized by a sol-gel method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). Then the photocatalytic inactivation of Fe-N-doped TiO2on leukemia tumors was investigated by using Cell Counting Kit-8 (CCK-8) assay. Additionally, the ultrastructural morphology and apoptotic percentage of treated cells were also studied. The experimental results showed that the growth of leukemic HL60 cells was significantly inhibited in groups treated with TiO2nanoparticles and the photocatalytic activity of Fe-N-TiO2was significantly higher than that of Fe-TiO2and N-TiO2, indicating that the photocatalytic efficiency could be effectively enhanced by the modification of Fe-N. Furthermore, when 2 wt% Fe-N-TiO2nanocomposites at a final concentration of 200 μg/mL were used, the inactivation efficiency of 78.5% was achieved after 30-minute light therapy.


2019 ◽  
Vol 6 (9) ◽  
pp. 191019 ◽  
Author(s):  
Shang Wang ◽  
Zhaolian Han ◽  
Tingting Di ◽  
Rui Li ◽  
Siyuan Liu ◽  
...  

The pod-shaped TiO 2 nano burst tubes (TiO 2 NBTs) were prepared by the combination of electrospinning and impregnation calcination with oxalic acid (H 2 C 2 O 4 ), polystyrene (PS) and tetrabutyl titanate. The silver nanoparticles (AgNPs) were loaded onto the surface of TiO 2 NBTs by ultraviolet light reduction method to prepare pod-shaped Ag@TiO 2 NBTs. In this work, we analysed the effect of the amount of oxalic acid on the cracking degree of TiO 2 NBTs; the effect of the concentration of AgNO 3 solution on the particle size and loading of AgNPs on the surface of TiO 2 NBTs. Scanning electron microscopy and transmission electron microscopy investigated the surface morphology of samples. X-ray diffraction and X-ray photoelectron spectroscopy characterized the structure and composition of samples. Rhodamine B (RhB) solution was used to evaluate the photocatalytic activity of pod-shaped TiO 2 NBTs and Ag@TiO 2 NBTs. The results showed that TiO 2 NBTs degraded 91.0% of RhB under ultraviolet light, Ag@TiO 2 NBTs degraded 95.5% under visible light for 75 and 60 min, respectively. The degradation process of both samples was consistent with the Langmuir–Hinshelwood first-order kinetic equation. Therefore, the catalytic performance of the sample is: Ag@TiO 2 NBTs > TiO 2 NBTs > TiO 2 nanotubes.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950045 ◽  
Author(s):  
Lin Zhao ◽  
Yanzhao Xie ◽  
Qiuyu Lin ◽  
Rongze Zheng ◽  
Yong Diao

A series of composite catalysts of C, N and P co-doped TiO2 were prepared by sol-gel method, using a biomass (soluble starch) dopant. The samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), fourier transform infrared (FTIR) spectroscopy. The results show that TiO2 is co-doped with C, N and P by one step. The resulting composite exhibited higher specific surface area, wider visible-light absorption band with respect to the pure TiO2. The sample calcined at 400∘C for 2[Formula: see text]h with a doping amount of 6[Formula: see text]g soluble starch showed the best electrochemical performance. The C, N and P co-doped TiO2 was also used for the degradation of methylene blue (MB) and degradation ratio was up to 98% in 80[Formula: see text]min under visible light irradiation.


2016 ◽  
Vol 680 ◽  
pp. 193-197
Author(s):  
San Ti Yi ◽  
Si Qin Zhao

TiO2, 1%La/TiO2, 1%Ce/TiO2 and a series of Laand Ce co-doped TiO2 photocatalysts were prepared by sol-gel method. Using sol-gel method combine with hydrothermal method prepared rare earth La, Ce and nitrogen co-doped TiO2 photocatalysts. The microstructure, spectroscopy performance and ion doped form of prepared samples were characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy techniques and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of doped TiO2 were examined by measuring the photodegradation of methyl orange. The results showed that the products were all anatase TiO2 nano powder, doping Laor Cehinder the growth of TiO2 particle, further more, doping Laand Cetogether hinder the growth of TiO2 particle more effective, doping N broaden the light response range of TiO2 photocatalyst. At the same time, the photocatalytic activity results indicated that the prepared samples showed superior UV light photocatalytic activity, the sample 1% (La:Ce,9:1)-N/TiO2 showed the highest UV-vis photocatalytic activity.


2007 ◽  
Vol 27 (13-15) ◽  
pp. 4291-4296 ◽  
Author(s):  
Riccardo Polini ◽  
Alessia Falsetti ◽  
Enrico Traversa ◽  
Oliver Schäf ◽  
Philippe Knauth

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yajing Zhang ◽  
Na Zheng ◽  
Kangjun Wang ◽  
Sujuan Zhang ◽  
Jing Wu

Cu/SiO2catalysts, for the synthesis of ethylene glycol (EG) from hydrogenation of dimethyl oxalate (DMO), were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS) and N2adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm), better copper dispersion, higher Cu+/C0ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.


2021 ◽  
Vol 11 (1) ◽  
pp. 105-110
Author(s):  
Dung Le Van ◽  
Phuong Dang Tuyet ◽  
Trinh Nguyen Duy ◽  
Manh Nguyen Ba

TiO2 and ZrO2 nanomaterials were successfully synthesized by sol gel method. Samples were characterized by X-ray difraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption–desorption, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS),  SEM images and TEM images of TiO2 and ZrO2 samples showed the particle size of 10–20 nm. The results have revealed highly porous structure of ZrO2 and TiO2 nanomaterials with specific surface area of 116 m2g-1 and 125 m2g-1, respectively. The TiO2 and ZrO2 materials were used as the degradation of dimethyl 4-nitrophenyl phosphate (DMNP) chemical warfare agent emulator. The ZrO2 nanomaterial exhibited highly catalytic performance of DMNP degradation and the conversion reached to the value of 90.64 %, after 120 min of reaction.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 378 ◽  
Author(s):  
Junjing Li ◽  
Huan Wang ◽  
Liang Wang ◽  
Chang Ma ◽  
Cong Luan ◽  
...  

Noble metal palladium modified foamed nickel electrode (Pd/foam-Ni) was prepared by electrodeposition method. The fabricated electrode showed better catalytic performance than the Pd/foam-Ni prepared by conventional electroless deposition. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Electrocatalytic activity of the Pd/Ni was studied for the hydrodechlorination of monochlorophenol isomers. The Pd/Ni exhibited good catalytic activity for 3-chlorophenol (3-CP). Complete decomposition of chlorophenol isomers could be achieved within 2 h, and the hydrodechlorination process conformed to the pseudo-first-order kinetic model. It showed a supreme stability after recycling for 5 times. The Pd/Ni exhibited a promising application prospect with high effectiveness and low Pd loading.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750061 ◽  
Author(s):  
Qiu Jin ◽  
Chaoyin Nie ◽  
Qianqian Shen ◽  
Yusheng Xu ◽  
Yanzhong Nie

Cobalt (Co) and sulfur (S) co-doped titanium dioxide (TiO2) catalysts were synthesized via sol–gel method. The structure of TiO2was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The valence states of elements were studied by X-ray photoelectron spectroscopy (XPS), and the optical-absorption properties of the catalysts were tested using the ultraviolet–visible (UV–Vis) spectrophotometer. The results showed that the grain sizes of Co and S co-doped TiO2 decreased with the increase of Co and S doping concentration within a certain range, and then the catalysts had obvious red shift on the absorption of visible light. Sample (2%Co–5%S–TiO2) showed excellent light absorption characteristics and the photo-response threshold increased significantly to about 760[Formula: see text]nm. Also, the further degradation test under visible light shows the 2%Co–5%S-TiO2 sample exhibit apparently improved degradation efficiency for Rhodamine B compared to the undoped one.


2020 ◽  
Vol 71 (7) ◽  
pp. 284-298
Author(s):  
Tang Chang-Bin ◽  
Niu Hao ◽  
Lu Yu-Xuan ◽  
Wang Fei ◽  
Zhang Yu-Jie ◽  
...  

In order to effectively realize the removal of low concentrations of lead ions in wastewater via capacitive deionization technology, MnO2 composite electrodes were prepared by a galvanostatic co-deposition approach, where polyaniline (PANI) and graphene were added to an MnO2 deposition solution and nickel foam was chosen as the substrate of the electrode. The microstructure, capacitance characteristics and adsorption behavior of Pb2+ ions of the electrodes were analyzed by scanning electron microscopy, X-ray diffraction, X ray photoelectron spectroscopy, laser Raman spectroscopy, cyclic voltammetry and capacitance deionization processes. The experimental results showed that the MnO2-PANI-graphene composite electrode has a high specific capacitance (132.8 F/g) and a 61.8% removal rate for simulated wastewater containing 20 mg/L Pb2 + ions under the conditions of 30�C and 1 mA/cm2, with the addition of 1 g/L PANI and 3 g/L graphene, respectively. Electroadsorption process was in accordance with the Lagergren quasi-second-order kinetic equation. The co-deposition of PANI and graphene oxide could play obvious role in enhancing the adsorption capacity and stability of the electrodes.


Sign in / Sign up

Export Citation Format

Share Document