scholarly journals Validation of Flood Runoff Simulation Using Distributed Hydrologic Models

2020 ◽  
Vol 20 (1) ◽  
pp. 173-184
Author(s):  
Dong Ho Nam ◽  
Hern Joong Ha ◽  
Byung Sik Kim

Due toclimate change, the average temperature of the Earth continues to increase, while abnormal climate patterns (such as El Niño and La Niña) occur frequently, causing numerous instances of flooding and drought damages. Thus, sophisticated analyses of rainfall-runoff phenomena are needed to reduce the damage caused by these weather disasters. Furthermore, analyzing the impact of extreme rainfall events occurring in a short period of time is essential for flood management. In this study, the Nakdong River, located in Yangsan, Gyeongsangnam-do, which is prone to localized heavy rainfall and flash floods, was selected as the target basin to conduct flood-runoff simulation. We used distributed runoff models such as spatial runoff assessment tool (S-RAT) and Vflo<sup>TM</sup> for this simulation, and compared and analyzed their results. Furthermore, using the same events, the validity and applicability of the S-RAT model has been verified through calibration. The errors of both models were calculated using statistical analysis to examine the domestic basin applicability of the S-RAT model.

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 509
Author(s):  
Jingwen Wu ◽  
Haiyan Zheng ◽  
Yang Xi

Runoff in snowy alpine regions is sensitive to climate change in the context of global warming. Exploring the impact of climate change on the runoff in these regions is critical to understand the dynamics of the water cycle and for the improvement of water resources management. In this study, we analyzed the long-term variations in annual runoff in the headwaters region of the Yellow River (HRYR) (a typical snowy mountain region) during the period of 1956–2012. The Soil and Water Assessment Tool (SWAT) with different elevation bands was employed to assess the performance of monthly runoff simulations, and then to evaluate the impacts of climate change on runoff. The results show that the observed runoff for the hydrological stations at lower relative elevations (i.e., Maqu and Tangnaihai stations) had a downward trend, with rates of 1.91 and 1.55 mm/10 years, while a slight upward trend with a rate of 0.26 mm/10 years was observed for the hydrological station at higher elevation (i.e., Huangheyan station). We also found that the inclusion of five elevation bands could lead to more accurate runoff estimates as compared to simulation without elevation bands at monthly time steps. In addition, the dominant cause of the runoff decline across the whole HRYR was precipitation (which explained 64.2% of the decrease), rather than temperature (25.93%).


2019 ◽  
Vol 32 (2) ◽  
pp. 244-266
Author(s):  
Edimilson Costa Lucas ◽  
Wesley Mendes-Da-Silva ◽  
Gustavo Silva Araujo

Purpose Managing the risks associated to world food production is an important challenge for governments. A range of factors, among them extreme weather events, has threatened food production in recent years. The purpose of this paper is to analyse the impact of extreme rainfall events on the food industry in Brazil, a prominent player in this industry. Design/methodology/approach The authors use the AR-GARCH-GPD hybrid methodology to identify whether extreme rainfall affects the stock price of food companies. To do so, the authors collected the daily closing price of the 16 food industry companies listed on the Brazilian stock exchange (B3), in January 2015. Findings The results indicate that these events have a significant impact on stock returns: on more than half of the days immediately following the heavy rain that fell between 28 February 2005 and 30 December 2014, returns were significantly low, leading to average daily losses of 1.97 per cent. These results point to the relevance of the need for instruments to hedge against weather risk, particularly in the food industry. Originality/value Given that extreme weather events have been occurring more and more frequently, financial literature has documented attempts at assessing the economic impacts of weather changes. There is little research, however, into assessing the impacts of these events at corporate level.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2201
Author(s):  
Jinn-Chyi Chen ◽  
Wen-Shun Huang

This study examined the conditions that lead to debris flows, and their association with the rainfall return period (T) and the probability of debris flow occurrence (P) in the Chenyulan watershed, central Taiwan. Several extreme events have occurred in the Chenyulan watershed in the past, including the Chi-Chi earthquake and extreme rainfall events. The T for three rainfall indexes (i.e., the maximum hourly rainfall depth (Im), the maximum 24-h rainfall amount (Rd), and RI (RI = Im× Rd)) were analyzed, and the T associated with the triggering of debris flows is presented. The P–T relationship can be determined using three indexes, Im, Rd, and RI; how it is affected and unaffected by extreme events was developed. Models for evaluating P using the three rainfall indexes were proposed and used to evaluate P between 2009 and 2020 (i.e., after the extreme rainfall event of Typhoon Morakot in 2009). The results of this study showed that the P‒T relationship, using the RI or Rd index, was reasonable for predicting the probability of debris flow occurrence.


2019 ◽  
Vol 11 (4) ◽  
pp. 1811-1828
Author(s):  
Armin Ahmadi ◽  
Amirhosein Aghakhani Afshar ◽  
Vahid Nourani ◽  
Mohsen Pourreza-Bilondi ◽  
A. A. Besalatpour

Abstract The river situation in a dry or semi-dry area is extremely affected by climate change and precipitation patterns. In this study, the impact of climate alteration on runoff in Kashafrood River Basin (KRB) in Iran was investigated using the Soil and Water Assessment Tool (SWAT) in historical and three future period times. The runoff was studied by MIROC-ESM and GFDL-ESM2G models as the outputs of general circulation models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP8.5). The DiffeRential Evolution Adaptive Metropolis (DREAM-ZS) was used to calibrate the hydrological model parameters in different sub-basins. Using DREAM-ZS algorithm, realistic values were obtained for the parameters related to runoff simulation in the SWAT model. In this area, results show that runoff in GFDL-ESM2G in both RCPs (2.6 and 8.5) in comparing future periods with the historical period is increased about 232–383% and in MIROC-ESM tends to increase around 87–292%. Furthermore, GFDL-ESM2G compared to MIROC-ESM in RCP2.6 (RCP8.5) in near, intermediate, and far future periods shows that the value of runoff increases 59.6% (23.0%), 100.2% (35.1%), and 42.5% (65.3%), respectively.


2021 ◽  
Author(s):  
Christoph Sauter ◽  
Christopher White ◽  
Hayley Fowler ◽  
Seth Westra

&lt;p&gt;Heatwaves and extreme rainfall events are natural hazards that can have severe impacts on society. The relationship between temperature and extreme rainfall has received scientific attention with studies focussing on how single daily or sub-daily rainfall extremes are related to day-to-day temperature variability. However, the impact multi-day heatwaves have on sub-daily extreme rainfall events and how extreme rainfall properties change during different stages of a heatwave remains mostly unexplored.&lt;/p&gt;&lt;p&gt;In this study, we analyse sub-daily rainfall records across Australia, a country that experiences severe natural hazards on a frequent basis, and determine their extreme rainfall properties, such as rainfall intensity, duration and frequency during SH-summer heatwaves. These properties are then compared to extreme rainfall properties found outside heatwaves, but during the same time of year, to examine to what extent they differ from normal conditions. We also conduct a spatial analysis to investigate any spatial patterns that arise.&lt;/p&gt;&lt;p&gt;We find that rainfall breaking heatwaves is often more extreme than average rainfall during the same time of year. This is especially prominent on the eastern and south-eastern Australian coast, where frequency and intensity of sub-daily rainfall extremes show an increase during the last day or the day immediately after a heatwave. We also find that although during heatwaves the average rainfall amount and duration decreases, there is an increase in sub-daily rainfall intensity when compared to conditions outside heatwaves. This implies that even though Australian heatwaves are generally characterised by dry conditions, rainfall occurrences within heatwaves are more intense.&lt;/p&gt;&lt;p&gt;Both heatwaves and extreme rainfall events pose great challenges for many sectors such as agriculture, and especially if they occur together. Understanding how and to what degree these events co-occur could help mitigate the impacts caused by them.&lt;/p&gt;


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1631 ◽  
Author(s):  
Yi-Chiung Chao ◽  
Chi-Wen Chen ◽  
Hsin-Chi Li ◽  
Yung-Ming Chen

In recent years, extreme weather phenomena have occurred worldwide, resulting in many catastrophic disasters. Under the impact of climate change, the frequency of extreme rainfall events in Taiwan will increase, according to a report on climate change in Taiwan. This study analyzed riverbed migrations, such as degradation and aggradation, caused by extreme rainfall events under climate change for the Choshui River, Taiwan. We used the CCHE1D model to simulate changes in flow discharge and riverbed caused by typhoon events for the base period (1979–2003) and the end of the 21st century (2075–2099) according to the climate change scenario of representative concentration pathways 8.5 (RCP8.5) and dynamical downscaling of rainfall data in Taiwan. According to the results on flow discharge, at the end of the 21st century, the average peak flow during extreme rainfall events will increase by 20% relative to the base period, but the time required to reach the peak will be 8 h shorter than that in the base period. In terms of the results of degradation and aggradation of the riverbed, at the end of the 21st century, the amount of aggradation will increase by 33% over that of the base period. In the future, upstream sediment will be blocked by the Chichi weir, increasing the severity of scouring downstream. In addition, due to the increased peak flow discharge in the future, the scouring of the pier may be more serious than it is currently. More detailed 2D or 3D hydrological models are necessary in future works, which could adequately address the erosive phenomena created by bridge piers. Our results indicate that not only will flood disasters occur within a shorter time duration, but the catchment will also face more severe degradation and aggradation in the future.


2018 ◽  
Vol 18 (5) ◽  
pp. 1832-1840 ◽  
Author(s):  
Rohini P. Devkota ◽  
Tek Maraseni

Abstract Most developing countries, like Nepal, are expected to experience the greatest impact of climate change (CC) sooner and on a greater magnitude than other developed countries. Increase in the magnitude and frequency of extreme rainfall events is likely to increase the risk of flooding in rivers. The West Rapti River basin is one of the most flood prone and also one of the most dynamic and economically important basins of Nepal. This study elicits the willingness to pay (WTP) from the local people in the basin to reduce risks from possible floods due to CC. The WTP for flood mitigation in different flood hazard zones and flood scenarios were determined using referendum method and a face to face questionnaire survey. From a total of 720 households across all flood zones, a stratified randomly selected sample of 210 households was surveyed. The sample included households from a range of socio-economic backgrounds. The average WTP varied by flood hazard zone and within each zone, by CC-induced flood scenarios. The average WTP of respondents was highest for the critical flood prone zone, followed by moderate and low flood prone zones. Similarly, within each zone, the average WTP increased with increasing flood magnitudes due to CC. The variation of average WTP of respondents in different flood prone zones and scenarios indicate different levels of perceived severity. Moreover, the introduction of the concept of ‘man-day’ or ‘labour-day’ in WTP research is a novel and applicable methodological approach, particularly in the South Asian region. The findings of this study are useful for policy implications for the design of participatory flood management plans in the river basin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingxiang Shu ◽  
Asaad Y. Shamseldin ◽  
Evan Weller

AbstractThis study quantifies the impact of atmospheric rivers (ARs) on rainfall in New Zealand. Using an automated AR detection algorithm, daily rainfall records from 654 rain gauges, and various atmospheric reanalysis datasets, we investigate the climatology of ARs, the characteristics of landfalling ARs, the contribution of ARs to annual and seasonal rainfall totals, and extreme rainfall events between 1979 and 2018 across the country. Results indicate that these filamentary synoptic features play an essential role in regional water resources and are responsible for many extreme rainfall events on the western side of mountainous areas and northern New Zealand. In these regions, depending on the season, 40–86% of the rainfall totals and 50–98% of extreme rainfall events are shown to be associated with ARs, with the largest contributions predominantly occurring during the austral summer. Furthermore, the median daily rainfall associated with ARs is 2–3 times than that associated with other storms. The results of this study extend the knowledge on the critical roles of ARs on hydrology and highlight the need for further investigation on the landfalling AR physical processes in relation to global circulation features and AR sources, and hydrological hazards caused by ARs in New Zealand.


2021 ◽  
Vol 165 (1-2) ◽  
Author(s):  
Giovanni Zanchetta ◽  
Monica Bini ◽  
Kevin Bloomfield ◽  
Adam Izdebski ◽  
Nicola Vivoli ◽  
...  

AbstractIntegrating palaeoclimatological proxies and historical records, which is necessary to achieve a more complete understanding of climate impacts on past societies, is a challenging task, often leading to unsatisfactory and even contradictory conclusions. This has until recently been the case for Italy, the heart of the Roman Empire, during the transition between Antiquity and the Middle Ages. In this paper, we present new high-resolution speleothem data from the Apuan Alps (Central Italy). The data document a period of very wet conditions in the sixth c. AD, probably related to synoptic atmospheric conditions similar to a negative phase of the North Atlantic Oscillation. For this century, there also exist a significant number of historical records of extreme hydroclimatic events, previously discarded as anecdotal. We show that this varied evidence reflects the increased frequency of floods and extreme rainfall events in Central and Northern Italy at the time. Moreover, we also show that these unusual hydroclimatic conditions overlapped with the increased presence of “water miracles” in Italian hagiographical accounts and social imagination. The miracles, performed by local Church leaders, strengthened the already growing authority of holy bishops and monks in Italian society during the crucial centuries that followed the “Fall of the Roman Empire”. Thus, the combination of natural and historical data allows us to show the degree to which the impact of climate variability on historical societies is determined not by the nature of the climatic phenomena per se, but by the culture and the structure of the society that experienced it.


2020 ◽  
Author(s):  
Arthur Depicker ◽  
Gerard Govers ◽  
Liesbet Jacobs ◽  
Benjamin Campforts ◽  
Judith Uwihirwe ◽  
...  

Abstract. Deforestation increases landslide activity over short, contemporary timescales. However, over longer timescales the location and timing of landsliding is controlled by the interaction between uplift and fluvial incision. Yet, the interaction between (human-induced) deforestation and landscape evolution has hitherto not been explicitly considered. We address this issue in the North Tanganyika-Kivu Rift region (East African Rift). In recent decades, the regional population has grown exponentially and the associated expansion of cultivated and urban land has resulted in widespread deforestation. On a much longer time scale, tectonic uplift has forged two parallel mountainous Rift shoulders that are continuously rejuvenated through knickpoint retreat, enforcing topographic steepening. In order to link deforestation and rejuvenation to landslide erosion, we compiled an inventory of nearly 8,000 recent shallow landslides in Google Earth© imagery from 2000–2019. To accurately calculate landslide erosion rates, we developed a new methodology to remediate inventory biases linked to the spatial and temporal inconsistency of this satellite imagery. We find that erosion rates in rejuvenated landscapes are roughly 40 % higher than in the surrounding relict landscapes, upstream of retreating knickpoints and outside of the Rift shoulders. This difference is due to the generally steeper relief in rejuvenated landscapes which more than compensates for the fact that rejuvenated slopes, when compared to similarly angled slopes in relict zones, often display a somewhat lower landslide erosion rate. These lower rates in the rejuvenated landscapes could be the result of a drier climate, the omission of earthquake-induced landslide events in our landslide inventory, and potentially a smaller regolith stock. More frequent extreme rainfall events in the relict zones, and possibly the presence of a thicker regolith, cause a stronger landslide response to deforestation compared to rejuvenated landscapes. Overall, deforestation initiates a landslide peak that lasts approximately 15 years and increases landslide erosion by a factor 2 to 8. Eventually, landslide erosion in deforested land falls back to a level similar to that observed under forest conditions, most likely due to the depletion of the most unstable regolith. Landslides are not only more abundant in rejuvenated landscapes but are also smaller in size, which may be a consequence of the seismic activity that fractures the bedrock and reduces the minimal critical area for slope failure. With this paper, we highlight the importance of considering the geomorphological context when studying the impact of recent land use changes on landslide activity.


Sign in / Sign up

Export Citation Format

Share Document