Alternation of temporally overlapped red and blue light under continuous irradiation affected yield, antioxidant capacity and nutritional quality of purple-leaf lettuce

2022 ◽  
Vol 295 ◽  
pp. 110864
Author(s):  
Mingjie Shao ◽  
Wenke Liu ◽  
Chengbo Zhou ◽  
Qi Wang ◽  
Baoshi Li
2021 ◽  
pp. 101878
Author(s):  
Md. Solaiman Hossain ◽  
Saad Al-din Sifat ◽  
M. Afzal Hossain ◽  
Sazlina Salleh ◽  
Mofazzal Hossain ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


2019 ◽  
Vol 10 (12) ◽  
pp. 2219-2235
Author(s):  
Myungjin Lee ◽  
Jingwen Xu ◽  
Weiqun Wang ◽  
C. B. Rajashekar

2017 ◽  
Vol 29 (3) ◽  
pp. 237 ◽  
Author(s):  
Esteban Snchez ◽  
Juan SidaArreola ◽  
Graciela vilaQuezada ◽  
Dmaris OjedaBarrios ◽  
Juan SotoParra ◽  
...  

HortScience ◽  
2020 ◽  
pp. 1-8
Author(s):  
Jing Huang ◽  
Ya-liang Xu ◽  
Fa-min Duan ◽  
Xu Du ◽  
Qi-chang Yang ◽  
...  

The aim of the present study was to evaluate the effects of alternating red (660 nm) and blue (460 nm) light on the growth and nutritional quality of two-leaf-color pak choi (Brassica campestris L. ssp. chinensis var. communis). Four light treatments (supplemental alternating red and blue light with intervals of 0, 1, 2, and 4 hours, with a monochromatic light intensity of 100 μmol·m−2·s−1 and a cumulative lighting time of 16 hours per day) were conducted in a greenhouse under identical ambient light conditions (90 to 120 μmol·m−2·s−1 at 12:00 am) for 10 days before green- and red-leaf pak choi were harvested. The results showed that the two-leaf-color pak choi receiving alternating red and blue light exhibited more compact canopies and wider leaves than those under the control treatment, which was attributed to the shade avoidance syndrome of plants. The present study indicated that the biomass of green-leaf pak choi was much higher than that of red-leaf pak choi, but the nutritional quality of green-leaf pak choi was lower than that of red-leaf pak choi, and seemingly indicating that the regulation of metabolism for pak choi was species specific under light exposure. The trends of both biomass and the soluble sugar content were highest under the 1-hour treatment. The contents of chlorophyll a and total chlorophyll in both cultivars (green- and red-leaf pak choi) were significantly increased compared with control, without significant differences among the 1-, 2-, and 4-hour treatments, whereas chlorophyll b exhibited no significant difference in any treatment. Alternating red- and blue-light treatment significantly affected the carotenoid content, but different trends in green- and red-leaf pak choi were observed, with the highest contents being detected under the 1-hour and 4-hour treatments, respectively. With increasing time intervals, the highest soluble protein contents in two-leaf-color pak choi were observed in the 4-hour treatment, whereas nitrate contents were significantly decreased in the 4-hour treatment. Compared with 0 hours, the contents of vitamin C, phenolic compounds, flavonoids, and anthocyanins in two-leaf-color pak choi were significantly increased, but no significant differences were observed in vitamin C, phenolic compounds, and flavonoids among the 1-, 2-, and 4-hour treatments, similar to what was found for the anthocyanin content of green-leaf pak choi. However, the content of anthocyanins in red-leaf pak choi gradually increased with increasing time intervals, with the highest content being found in the 4-hour treatment. Supplemental alternating red and blue light slightly increased the antioxidant capacity [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and antioxidant power], but no significant differences were observed after 1, 2, and 4 hours of treatment. Taken together, treatment with an interval of 1 hour was the most effective for increasing the biomass of pak choi in this study, but treatment with a 4-hour interval should be considered to enhance the accumulation of health-promoting compounds.


LWT ◽  
2011 ◽  
Vol 44 (10) ◽  
pp. 2147-2153 ◽  
Author(s):  
S. Ragaee ◽  
I. Guzar ◽  
N. Dhull ◽  
K. Seetharaman

HortScience ◽  
2020 ◽  
Vol 55 (7) ◽  
pp. 1055-1060 ◽  
Author(s):  
Celina Gómez ◽  
Juan Jiménez

Numerous studies have evaluated the effect of high-energy radiation as means to increase nutritional quality of lettuce (Lactuca sativa). However, most research has focused on providing constant radiation quality or quantity throughout the production cycle, which typically results in yield reductions or increases in production costs. End-of-production (EOP) radiation is a cost-effective, preharvest practice that can allow growers to manipulate product quality and thus increase market value of lettuce without negatively affecting plant growth. The objective of this study was to quantify and compare growth and accumulation of secondary metabolites from ‘Rouxaï RZ’ and ‘Codex RZ’ red-leaf lettuce grown indoors and exposed to different strategies of EOP high-energy radiation. Plants were grown for 24 days under an average daily light integral (DLI) of 15.8 mol·m‒2·d‒1 (220 µmol·m‒2·s‒1 for 20 h·d−1) using red:blue light-emitting diode (LED) lamps. Four days before harvest (36 days after sowing), plants were exposed to one of three EOP treatments added to red:blue LEDs: 1) ultraviolet-A (EOP-ultraviolet); 2) high blue (EOP-B); or 3) high-intensity (EOP-H) radiation. A fourth treatment was included as a control, with no EOP. Except for EOP-H, all treatments provided a DLI of 15.8 mol·m‒2·d‒1; EOP-H provided a DLI of 31.7 mol·m‒2·d‒1. No treatment differences were measured for shoot fresh weight (FW) of ‘Rouxaï RZ’ but shoot FW of ‘Codex RZ’ was negatively affected by EOP radiation, indicating potential changes in lettuce yield from applying EOP high-energy radiation during active plant growth. In general, EOP treatments did not affect total phenolic content and total carotenoid concentration of plants, but anthocyanin content and antioxidant capacity were positively influenced by EOP-B and EOP-H, whereas EOP-ultraviolet resulted in similar nutritional quality to control. Findings from this study indicate that EOP high-energy radiation, especially EOP-B, has significant potential to improve the nutritional quality of red-leaf lettuce grown in controlled environments.


2020 ◽  
Vol 61 (6) ◽  
pp. 989-997
Author(s):  
Mingjie Shao ◽  
Wenke Liu ◽  
Lingyan Zha ◽  
Chengbo Zhou ◽  
Yubin Zhang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lie Li ◽  
Yu-xin Tong ◽  
Jun-ling Lu ◽  
Yang-mei Li ◽  
Xin Liu ◽  
...  

Green light, as part of the photosynthetically active radiation, has been proven to have high photosynthetic efficiency once absorbed by plant leaves and can regulate plant physiological activities. However, few studies have investigated the appropriate and efficient way of using the green light for plant production. Thus, the objective of this study was to investigate a moderate amount of green light, partially replacing red and blue light, for plant growth and development. In this experiment, four treatments were set up by adjusting the relative amount of green light as 0 (RB), 30 (G30), 60 (G60), and 90 (G90) μmol m−2 s−1, respectively, with a total photosynthetic photon flux density of 200 μmol m−2 s−1 and a fixed red-to-blue ratio of 4:1. Lettuce (Lactuca sativa cv. ‘Tiberius’) plant growth and morphology, stomatal characteristics, light absorptance and transmittance, photosynthetic characteristics, and nutritional quality were investigated. The results showed that: (1) shoot dry weight increased by 16.3 and 24.5% and leaf area increased by 11.9 and 16.2% under G30 and G60, respectively, compared with those under RB. Plant stem length increased linearly with increasing green-to-blue light ratio; (2) light transmittance of lettuce leaf under treatments employing green light was higher than that under RB, especially in the green region; (3) stomatal density increased, whereas stomatal aperture area decreased with the increase in the relative amount of green light; and (4) carbohydrate accumulation increased under G60 and G90. Soluble sugar contents under G60 and G90 increased by 39.4 and 19.4%, respectively. Nitrate contents under G30, G60, and G90 decreased by 26.2, 40.3, and 43.4%, respectively. The above results indicated that 15–30% green light replacing red and blue light effectively increased the yield and nutritional quality of lettuce plants.


Sign in / Sign up

Export Citation Format

Share Document