scholarly journals Beyond Protein Synthesis; The Multifaceted Roles of Tuberin in Cell Cycle Regulation

Author(s):  
E. Fidalgo da Silva ◽  
J. Fong ◽  
A. Roye-Azar ◽  
A. Nadi ◽  
C. Drouillard ◽  
...  

The ability of cells to sense diverse environmental signals, including nutrient availability and conditions of stress, is critical for both prokaryotes and eukaryotes to mount an appropriate physiological response. While there is a great deal known about the different biochemical pathways that can detect and relay information from the environment, how these signals are integrated to control progression through the cell cycle is still an expanding area of research. Over the past three decades the proteins Tuberin, Hamartin and TBC1D7 have emerged as a large protein complex called the Tuberous Sclerosis Complex. This complex can integrate a wide variety of environmental signals to control a host of cell biology events including protein synthesis, cell cycle, protein transport, cell adhesion, autophagy, and cell growth. Worldwide efforts have revealed many molecular pathways which alter Tuberin post-translationally to convey messages to these important pathways, with most of the focus being on the regulation over protein synthesis. Herein we review the literature supporting that the Tuberous Sclerosis Complex plays a critical role in integrating environmental signals with the core cell cycle machinery.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Boris Popov ◽  
Nikolai Petrov ◽  
Vladimir Ryabov ◽  
Igor Evsyukov

An effective regulation of quiescence plays a key role in the differentiation, plasticity, and prevention of stem cells from becoming malignant. The state of quiescence is being controlled by the pRb family proteins which show overlapping functions in cell cycle regulation; however, their roles in controlling the proliferation of mesenchymal stem cells (MSCs) remain to be understood. This study investigated the regulation of transient quiescence using growth curves, proliferation assay, the cytometric evaluation of cell cycle, Western blotting, and the electromobility gel shift assay (EMSA) on synchronized MSCs of the C3H10Т1/2 and control cells with different statuses of pRb proteins. It has been found that functional steady-state level of p130 but not pRb plays a critical role for entering, exiting, and maintenance of transient quiescence in multipotent mesenchymal stem cells.


2005 ◽  
Vol 388 (3) ◽  
pp. 973-984 ◽  
Author(s):  
Mark ROLFE ◽  
Laura E. McLEOD ◽  
Phillip F. PRATT ◽  
Christopher G. PROUD

The hypertrophic Gq-protein-coupled receptor agonist PE (phenylephrine) activates protein synthesis. We showed previously that activation of protein synthesis by PE requires MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and mTOR (mammalian target of rapamycin). However, it remained unclear whether ERK activation was required and which downstream components were involved in activating mTOR and protein synthesis. Using an adenovirus encoding the MKP3 (MAPK phosphatase 3) to inhibit ERK activity, we demonstrate that ERK is essential for the activation of protein synthesis by PE. Activation and phosphorylation of S6K1 (ribosomal protein S6 kinase 1) and phosphorylation of eIF4E (eukaryotic initiation factor 4E)-binding protein (both are mTOR targets) were also inhibited by MKP3, suggesting that ERK is also required for the activation of mTOR signalling. PE stimulation of cardiomyocytes induced the phosphorylation of TSC2 (tuberous sclerosis complex 2), a negative regulator of mTOR activity. TSC2 was phosphorylated only weakly at Thr1462, but phosphorylated at additional sites within the sequence RXRXX(S/T). This differs from the phosphorylation induced by insulin, indicating that MEK/ERK signalling targets distinct sites in TSC2. This phosphorylation may be mediated by p90RSK (90 kDa ribosomal protein S6K), which is activated by ERK, and appears to involve phosphorylation at Ser1798. Activation of protein synthesis by PE is partially insensitive to the mTOR inhibitor rapamycin. Inhibition of the MAPK-interacting kinases by CGP57380 decreases the phosphorylation of eIF4E and PE-induced protein synthesis. Moreover, CGP57380+rapamycin inhibited protein synthesis to the same extent as blocking ERK activation, suggesting that MAPK-interacting kinases and regulation of mTOR each contribute to the activation of protein synthesis by PE in cardiomyocytes.


2014 ◽  
Vol 26 (6) ◽  
pp. 2582-2600 ◽  
Author(s):  
Gang Wang ◽  
Jushan Zhang ◽  
Guifeng Wang ◽  
Xiangyu Fan ◽  
Xin Sun ◽  
...  

2011 ◽  
Vol 195 (5) ◽  
pp. 709-720 ◽  
Author(s):  
Eric M. Pietras ◽  
Matthew R. Warr ◽  
Emmanuelle Passegué

Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Puneet Garg ◽  
Anuradha Sharma ◽  
Heena Rajani ◽  
Apratim R. Choudhary ◽  
Rajkumar Meena

2021 ◽  
Author(s):  
Jessica Dare-Shih ◽  
Adam Pillon ◽  
Jackie Fong ◽  
Elizabeth Fidalgo da Silva ◽  
Lisa Porter

Tuberin is a major component of the protein regulatory complex known as the Tuberous Sclerosis Complex and plays a crucial role in cell cycle progression and protein synthesis. Mutations in the Tuberin gene, TSC2, lead to the formation of benign tumors in many organ systems and causes the Tuberous Sclerosis Complex disorder. Genotypes ranging from point mutations to large deletions in the TSC2 gene have been clinically characterized with a wide range of phenotypes from skin tumors to large brain tumors. Our current work investigates the molecular mechanisms behind Tuberin and its ability to regulate the cell cycle through its binding to the G2/M cyclin, Cyclin B1. After creating an early stop codon in a critical region of the Tuberin, our results show the in vitro phenotype that occurs from a truncated Tuberin protein. Herein we demonstrate that this clinically relevant truncated form of Tuberin promotes an increased nuclear accumulation of Cyclin B1 and a subsequent increase in cell proliferation supporting the phenotypic data seen in the clinic with Tuberous Sclerosis Complex patients showing deletions within the TSC2 gene. This data provides an insight into some of the functional and molecular consequences of truncated proteins that are seen in clinical patients.


2011 ◽  
Vol 193 (4) ◽  
pp. 695-710 ◽  
Author(s):  
Alla Amcheslavsky ◽  
Naoto Ito ◽  
Jin Jiang ◽  
Y. Tony Ip

Intestinal stem cells (ISCs) in the adult Drosophila melanogaster midgut can respond to damage and support repair. We demonstrate in this paper that the tuberous sclerosis complex (TSC) plays a critical role in balancing ISC growth and division. Previous studies have shown that imaginal disc cells that are mutant for TSC have increased rates of growth and division. However, we report in this paper that loss of TSC in the adult Drosophila midgut results in the formation of much larger ISCs that have halted cell division. These mutant ISCs expressed proper stem cell markers, did not differentiate, and had defects in multiple steps of the cell cycle. Slowing the growth by feeding rapamycin or reducing Myc was sufficient to rescue the division defect. The TSC mutant guts had a thinner epithelial structure than wild-type tissues, and the mutant flies were more susceptible to tissue damage. Therefore, we have uncovered a context-dependent phenotype of TSC mutants in adult ISCs, such that the excessive growth leads to inhibition of division.


Sign in / Sign up

Export Citation Format

Share Document