scholarly journals Hexokinase gene OsHXK1 positively regulates leaf senescence in rice

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaoyan Zheng ◽  
Jingqin Lu ◽  
Di Yu ◽  
Jing Li ◽  
Hai Zhou ◽  
...  

Abstract Background Leaf senescence is a highly complex and meticulous regulatory process, and the disruption of any factor involved in leaf senescence might lead to premature or delayed leaf senescence and thus result in reduced or increased crop yields. Despite sincere efforts by scientists, there remain many unsolved problems related to the regulatory factors and molecular mechanisms of leaf senescence. Results This study successfully revealed that OsHXK1 was highly expressed in senescent leaves of rice. The upregulation of OsHXK1 led to premature senescence of rice leaves, a decreased level of chlorophyll, and damage to the chloroplast structure. The overexpression of OsHXK1 resulted in increases in glucose and ROS levels and produced programmed cell death (PCD) signals earlier at the booting stage. Further analysis showed that expression level of the respiratory burst oxidase homolog (RBOH) genes and OsGLO1 were increased in OsHXK1-overexpressing plants at the booting stage. Conclusions Overall, the outcomes of this study suggested that OsHXK1 could act as a positive regulator of rice leaf senescence by mediating glucose accumulation and inducing an increase in ROS.

2013 ◽  
Vol 152 (6) ◽  
pp. 894-905
Author(s):  
H. N. XU ◽  
K. WANG ◽  
Y. N. ZHANG ◽  
Q. CHEN ◽  
L. M. CHEN ◽  
...  

SummaryAluminium (Al) toxicity is the major factor-limiting crop productivity in acid soils. In the present study, physiological and transcriptional responses of broad bean leaves to Al stress were investigated. Malondialdehyde (MDA) content, H2O2 content and protein carbonyls (PC) level in leaves were increased after 100 μm AlCl3 stress treatment, whereas the total protein content was decreased, compared with the plants without Al treatment. Stomatal closure in leaves of broad bean was increased after Al stress, suggesting that the photosynthesis rate might be affected by Al stress. The relative citrate secretion in leaves was decreased after Al treatment for 24 h according to the 13C-NMR analysis, indicating that citrate in leaves might be transported to the root to chelate Al3+. To investigate the molecular mechanisms of Al toxicity in leaves of broad bean, a suppression subtractive hybridization (SSH) library was constructed to identify up-regulated genes: cDNA from leaves subjected to 12, 24, 48 and 72 h of 50 and 100 μm AlCl3 stress were used as testers and cDNA from leaves subjected to 0 μm AlCl3 treatment for the same lengths of time as above were used as a driver. The SSH analysis identified 156 non-redundant putative Al stress-responsive expressed sequence tags (ESTs) out of 960 clones. The ESTs were categorized into ten functional groups, which were involved in metabolism (0·21), protein synthesis and protein fate (0·10), photosynthesis and chloroplast structure (0·09), transporter (0·08), cell wall related (0·06), signal transduction (0·05), defence, stress and cell death (0·05), energy (0·03), transcription factor (0·03) and unknown proteins (0·30). The effect of Al treatment on expression of 15 selected genes was investigated by reverse transcription polymerase chain reaction (RT–PCR), confirming induction by Al stress. The results indicated that genes involved in organic acid metabolism, transport, photosynthesis and chloroplast structure, defence, stress and cell death might play important roles under Al stress.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Na Jiang ◽  
Xiaoyu Zhang ◽  
Xuejun Gu ◽  
Xiaozhuang Li ◽  
Lei Shang

AbstractLong non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but not translated into proteins. LncRNAs regulate gene expressions at multiple levels, such as chromatin, transcription, and post-transcription. Further, lncRNAs participate in various biological processes such as cell differentiation, cell cycle regulation, and maintenance of stem cell pluripotency. We have previously reported that lncRNAs are closely related to programmed cell death (PCD), which includes apoptosis, autophagy, necroptosis, and ferroptosis. Overexpression of lncRNA can suppress the extrinsic apoptosis pathway by downregulating of membrane receptors and protect tumor cells by inhibiting the expression of necroptosis-related proteins. Some lncRNAs can also act as competitive endogenous RNA to prevent oxidation, thereby inhibiting ferroptosis, while some are known to activate autophagy. The relationship between lncRNA and PCD has promising implications in clinical research, and reports have highlighted this relationship in various cancers such as non-small cell lung cancer and gastric cancer. This review systematically summarizes the advances in the understanding of the molecular mechanisms through which lncRNAs impact PCD.


2021 ◽  
Vol 22 (8) ◽  
pp. 3936
Author(s):  
Ahmed G. Gad ◽  
Habiba ◽  
Xiangzi Zheng ◽  
Ying Miao

Leaf senescence, as an integral part of the final development stage for plants, primarily remobilizes nutrients from the sources to the sinks in response to different stressors. The premature senescence of leaves is a critical challenge that causes significant economic losses in terms of crop yields. Although low light causes losses of up to 50% and affects rice yield and quality, its regulatory mechanisms remain poorly elucidated. Darkness-mediated premature leaf senescence is a well-studied stressor. It initiates the expression of senescence-associated genes (SAGs), which have been implicated in chlorophyll breakdown and degradation. The molecular and biochemical regulatory mechanisms of premature leaf senescence show significant levels of redundant biomass in complex pathways. Thus, clarifying the regulatory mechanisms of low-light/dark-induced senescence may be conducive to developing strategies for rice crop improvement. This review describes the recent molecular regulatory mechanisms associated with low-light response and dark-induced senescence (DIS), and their effects on plastid signaling and photosynthesis-mediated processes, chloroplast and protein degradation, as well as hormonal and transcriptional regulation in rice.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Tsui-Wen Chou ◽  
Nydia P. Chang ◽  
Medha Krishnagiri ◽  
Aisha P. Patel ◽  
Marissa Lindman ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopamine neurons. The pathogenesis of PD is poorly understood, though misfolded and/or aggregated forms of the protein α-synuclein have been implicated in several neurodegenerative disease processes, including neuroinflammation and astrocyte activation. Astrocytes in the midbrain play complex roles during PD, initiating both harmful and protective processes that vary over the course of the disease. However, despite their significant regulatory roles during neurodegeneration, the cellular and molecular mechanisms that promote pathogenic astrocyte activity remain mysterious. Here, we show that α-synuclein preformed fibrils (PFFs) induce pathogenic activation of human midbrain astrocytes, marked by inflammatory transcriptional responses, downregulation of phagocytic function, and conferral of neurotoxic activity. These effects required the necroptotic kinases RIPK1 and RIPK3, but were independent of MLKL and necroptosis. Instead, both transcriptional and functional markers of astrocyte activation occurred via RIPK-dependent activation of NF-κB signaling. Our study identifies a previously unknown function for α-synuclein in promoting neurotoxic astrocyte activation, as well as new cell death-independent roles for RIP kinase signaling in the regulation of glial cell biology and neuroinflammation. Together, these findings highlight previously unappreciated molecular mechanisms of pathologic astrocyte activation and neuronal cell death with implications for Parkinsonian neurodegeneration.


Author(s):  
Diane Moujalled ◽  
Andreas Strasser ◽  
Jeffrey R. Liddell

AbstractTightly orchestrated programmed cell death (PCD) signalling events occur during normal neuronal development in a spatially and temporally restricted manner to establish the neural architecture and shaping the CNS. Abnormalities in PCD signalling cascades, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and cell death associated with autophagy as well as in unprogrammed necrosis can be observed in the pathogenesis of various neurological diseases. These cell deaths can be activated in response to various forms of cellular stress (exerted by intracellular or extracellular stimuli) and inflammatory processes. Aberrant activation of PCD pathways is a common feature in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, resulting in unwanted loss of neuronal cells and function. Conversely, inactivation of PCD is thought to contribute to the development of brain cancers and to impact their response to therapy. For many neurodegenerative diseases and brain cancers current treatment strategies have only modest effect, engendering the need for investigations into the origins of these diseases. With many diseases of the brain displaying aberrations in PCD pathways, it appears that agents that can either inhibit or induce PCD may be critical components of future therapeutic strategies. The development of such therapies will have to be guided by preclinical studies in animal models that faithfully mimic the human disease. In this review, we briefly describe PCD and unprogrammed cell death processes and the roles they play in contributing to neurodegenerative diseases or tumorigenesis in the brain. We also discuss the interplay between distinct cell death signalling cascades and disease pathogenesis and describe pharmacological agents targeting key players in the cell death signalling pathways that have progressed through to clinical trials.


2002 ◽  
Vol 155 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Ruey-Hua Lee ◽  
Shu-Chen Grace Chen

Oncogenesis ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Yu Geon Lee ◽  
Hui Won Kim ◽  
Yeji Nam ◽  
Kyeong Jin Shin ◽  
Yu Jin Lee ◽  
...  

AbstractMitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.


2020 ◽  
Vol 168 (1) ◽  
pp. 1-6
Author(s):  
Chikashi Yoshimura ◽  
Akiomi Nagasaka ◽  
Hitoshi Kurose ◽  
Michio Nakaya

Abstract Myocardial infarction is one of the major causes of death worldwide. Many heart cells die during myocardial infarction through various processes such as necrosis, apoptosis, necroptosis, autophagy-related cell death, pyroptosis and ferroptosis. These dead cells in infarcted hearts expose the so-called ‘eat-me’ signals, such as phosphatidylserine, on their surfaces, enhancing their removal by professional and non-professional phagocytes. Clearance of dead cells by phagocytes in the diseased hearts plays a crucial role in the pathology of myocardial infarction by inhibiting the inflammatory responses caused by the leakage of contents from dead cells. This review focuses on the rapidly growing understanding of the molecular mechanisms of dead cell phagocytosis, termed efferocytosis, during myocardial infarction, which contributes to the pathophysiology of myocardial infarction.


Cartilage ◽  
2020 ◽  
pp. 194760352097676
Author(s):  
Ekkapol Akaraphutiporn ◽  
Takafumi Sunaga ◽  
Eugene C. Bwalya ◽  
Wang Yanlin ◽  
Mwale Carol ◽  
...  

Objective To investigate the role and characterize the molecular mechanisms regulating apoptosis and autophagy in nitric oxide (NO)–induced chondrocyte cell death. Design Cell apoptosis and autophagy were evaluated in chondrocytes treated with sodium nitroprusside (SNP) combined with the presence or absence of interleukin-1 beta (IL-1β) and nutrient-deprived conditions. The concentration of nitrite was determined by Griess reaction. Activation of apoptosis and autophagy were determined by immunocytochemistry, Western blot, and quantitative real-time polymerase chain reaction (qPCR) analysis. Flow cytometry and MTT assay were used to assess cell viability. Results Cotreatment of chondrocytes with SNP and IL-1β under nutrient-deprived condition potentially enhanced the effect of NO-induced cell death. Immunocytochemistry, Western blot, and qPCR analysis indicated that treatment of chondrocytes with SNP significantly reduced autophagic activity, autophagic flux, and multiple autophagy-related (Atg) genes expression. These findings were associated with an increase in ERK, Akt, and mTOR phosphorylation, whereas autophagy induction through mTOR/p70S6K inhibition by rapamycin significantly suppressed NO-induced cell apoptosis. Furthermore, the cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-3 activation in response to apoptosis was weakly detected. These results corresponded with a significant increase in apoptosis-inducing factor (AIF) expression, suggesting the involvement of the caspase-independent pathway. Conclusions These results demonstrate that in chondrocyte cultures with cells induced into an osteoarthritis state, NO inhibits autophagy and induces chondrocyte apoptosis mainly, but not completely through the caspase-independent pathway. Our data suggest that autophagy is a protective mechanism in the pathogenesis of osteoarthritis and could be proposed as a therapeutic target for degenerative joint diseases.


Sign in / Sign up

Export Citation Format

Share Document