scholarly journals Design of Metal-Organic Polymers MIL-53(M3+): Preparation and Characterization of MIL-53(Fe) and Graphene Oxide Composite

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1281
Author(s):  
Quang K. Nguyen ◽  
Galina M. Kuz’micheva ◽  
Evgeny V. Khramov ◽  
Roman D. Svetogorov ◽  
Ratibor G. Chumakov ◽  
...  

This article presents a crystal chemical analysis, generalization, and systematization of structural characteristics of metal-organic polymers MIL-53(M3+) with M = Al, Cr, Ga, and Fe. The division of the MIL-53(M3+) structures into a morphotropic series was performed, which made it possible to predict the formation of new compounds or solid solutions with the corresponding composition and structure. The change in the symmetry of MIL-53(M3+) and the causes of polymorphs formation are explained on the basis of crystal chemical rules. The efficiency of the revealed regularities in the structural characteristics of the MIL-53(M3+) phases were experimentally confirmed for MIL-53(Fe) and composite MIL-53(Fe)/GO (GO-graphene oxide) by several methods (powder X-ray, X-ray absorption, and photoelectron spectroscopy). For the first time, different coordination numbers (CN) (CNFe = 4.9 for MIL-53(Fe)—two types of coordination polyhedra with CNFe = 6 and CNFe = 4; CNFe = 4 for MIL-53 (Fe3+)/GO) and the formal charges (FC) of iron ions (variable FC of Fe (2+δ)+ in MIL-53(Fe3+) and Fe2+ in MIL-53(Fe3+)/GO) were found. These experimental data explain the higher photocatalytic activity of MIL-53(Fe3+)/GO in photo-Fenton reactions—RR195 decomposition.

2019 ◽  
Vol 1 (10) ◽  
Author(s):  
Orestis Vryonis ◽  
Thomas Andritsch ◽  
Alun S. Vaughan ◽  
Paul L. Lewin

Abstract Two different graphitic powders, namely: moderately-oxidized graphene oxide (mGO) synthesized via a chromium-based technique and a commercial edge-oxidized graphene oxide (eGO), were characterized and incorporated into an epoxy resin, suitable for wind turbine blade structural components. Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis revealed low oxygen content, but divergent structural characteristics for both powders confirming the increased basal-plane functionality of mGO compared to the peripherally decorated eGO. It is also shown that the eGO, displays carbon-based impurities. The inclusion of mGO, into the epoxy resulted in an initial glass transition temperature (Tg) increase (~ 5 °C at 4.4 vol.% mGO) but thereafter Tg decreased sharply. On the contrary, the inclusion of eGO resulted only in a progressive Tg increase. Introduction of just 1 vol.% of eGO deteriorated the tensile strength (~ 15% reduction) of the epoxy, while the strength of the mGO-filled samples was retained. Inclusion of mGO results in a percolation threshold (increase from 4.6 × 10−16 to 6 × 10−9 S/cm) at 0.53 vol.%; in contrast, at the same filler content, the eGO-filled systems are characterized by drastically lower conductivity values (3.4 × 10−16 S/cm). Nevertheless, further analysis indicates similar intrinsic conductivity (~ 10−6 S/cm) for the two fillers. Finally, the maximum achieved thermal conductivity increase with mGO was 200% (at 9.13 vol.%) compared with the unfilled epoxy, while the respective increase with eGO was 150% (at 18 vol.%).


2020 ◽  
Vol 59 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Yao Wang ◽  
Jianqing Feng ◽  
Lihua Jin ◽  
Chengshan Li

AbstractWe have grown Cu2O films by different routes including self-oxidation and metal-organic deposition (MOD). The reduction efficiency of Cu2O films on graphene oxide (GO) synthesized by modified Hummer’s method has been studied. Surface morphology and chemical state of as-prepared Cu2O film and GO sheets reduced at different conditions have also been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). Results show that self-oxidation Cu2O film is more effective on phtocatalytic reduction of GO than MOD-Cu2O film. Moreover, reduction effect of self-oxidation Cu2O film to GO is comparable to that of environmental-friendly reducing agent of vitamin C. The present results offer a potentially eco-friendly and low-cost approach for the manufacture of reduced graphene oxide (RGO) by photocatalytic reduction.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2011 ◽  
Vol 287-290 ◽  
pp. 539-543 ◽  
Author(s):  
Wen Shi Ma ◽  
Jun Wen Zhou ◽  
Xiao Dan Lin

Graphene oxide was prepared through Hummers' method,then different reduced graphenes were prepared via reduction of graphene oxide with hydrazine hydrate for 1h、12h and 24h. X-ray photoelectron spectroscopy (XPS) was used for the characterization of graphene oxide and the reduced graphenes. The variation of the contents of carbon in carbon and oxygen functional groups and chemical compositions of graphene oxides were investigated through analysis the content of different carbon atoms in different reduced graphenes. The results showed that the reduction reaction was very fast in the first 1 h, the content of total oxygen bonded carbon atoms decreased from 83.6% to 22.1%, and then after the reduction rate became very slow. After 12h, the content of total oxygen bonded carbon atom is 19.56%, only 2.54% lower than that of 1h’s. At the same time, C-N was introduced in the graphene oxides; this increased the stereo-hindrance for hydrazine hydrate attacking the C-Oxygen groups, thus reduced the reduction rate. After reduction for 24h, there still exists 16.4% oxygen bonded carbon atoms and the total conversion ratio of graphene approaches 70%.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


Author(s):  
Ke Qu ◽  
Yuqi Bai ◽  
Miao Deng

Abstract The ever-increasing need for small and lightweight power sources for use in portable or wearable electronic devices has spurred the development of supercapacitors as a promising energy storage and conversion system. In this work, a simple, facile and easy-to-practice method has been developed to employ carbon paper (CP) as the support to coat molybdenum disulfide (MoS2) and graphene oxide (GO), followed by electrodeposition of polyaniline (PANI) to render CP/MoS2-GO-PANI. The preparation parameters, such as amounts of MoS2, GO and number of aniline electropolymerization cycles, have been optimized to render CP/MoS2-GO-PANI the best capacitive performance. The as-prepared optimal CP/MoS2-GO-PANI is characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The supercapacitive properties of CP/MoS2-GO-PANI as an electrode have been evaluated electrochemically via cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy testing. CP/MoS2-GO-PANI delivers a specific capacitance of 255.1 F/g at 1.0 A/g and exhibits excellent rate capability under larger current densities. Moreover, a symmetrical supercapacitor is assembled and three are connected in series to power a light-emitting diode for ~15 minutes, demonstrating the promising application potential of CP/MoS2-GO-PANI-based supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document