scholarly journals Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling

Author(s):  
Elizabeth Dingle ◽  
Hugh Sinclair ◽  
Jeremy Venditti ◽  
Mikael Attal ◽  
Tim Kinnaird ◽  
...  

<p>The gravel-sand transition is observed along most rivers. It is characterized by an abrupt reduction in median bed grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load-dominated to suspended bed material load. We document changes in channel stability, suspended sediment concentrations, flux and grain size across the gravel-sand transition of the Karnali River, Nepal. Upstream of the gravel-sand transition, gravel-bed channels are stable over hundred to thousand-year timescales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size and flux reveal counterintuitive increases downstream of the gravel-sand transition. The results demonstrate a dramatic change in channel dynamics across the transition, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower gradient, relatively mobile sand-bed channels. The increase in sediment concentrations and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank materials.   These results bring new constraints on channel stability at mountain fronts, and indicate that temporally and spatially limited sediment flux measurements downstream of gravel-sand transitions are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.</p>

Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 468-472 ◽  
Author(s):  
Elizabeth H. Dingle ◽  
Hugh D. Sinclair ◽  
Jeremy G. Venditti ◽  
Mikaël Attal ◽  
Tim C. Kinnaird ◽  
...  

Abstract The gravel-sand transition (GST) is commonly observed along rivers. It is characterized by an abrupt reduction in median grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load–dominated to suspended bed material load. We documented changes in channel stability, suspended sediment concentration, flux, and grain size across the GST of the Karnali River, Nepal. Upstream of the GST, gravel-bed channels are stable over hundred- to thousand-year time scales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size, and flux reveal counterintuitive increases downstream of the GST. The results demonstrate a dramatic change in channel dynamics across the GST, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower-gradient, relatively mobile sand-bed channels. The increase in sediment concentration and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank material. These results bring new constraints on channel stability at mountain fronts and indicate that temporally and spatially limited sediment flux measurements downstream of GSTs are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.


Earth ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 32-50
Author(s):  
Rocky Talchabhadel ◽  
Jeeban Panthi ◽  
Sanjib Sharma ◽  
Ganesh R. Ghimire ◽  
Rupesh Baniya ◽  
...  

Streamflow and sediment flux variations in a mountain river basin directly affect the downstream biodiversity and ecological processes. Precipitation is expected to be one of the main drivers of these variations in the Himalayas. However, such relations have not been explored for the mountain river basin, Nepal. This paper explores the variation in streamflow and sediment flux from 2006 to 2019 in central Nepal’s Kali Gandaki River basin and correlates them to precipitation indices computed from 77 stations across the basin. Nine precipitation indices and four other ratio-based indices are used for comparison. Percentage contributions of maximum 1-day, consecutive 3-day, 5-day and 7-day precipitation to the annual precipitation provide information on the severity of precipitation extremeness. We found that maximum suspended sediment concentration had a significant positive correlation with the maximum consecutive 3-day precipitation. In contrast, average suspended sediment concentration had significant positive correlations with all ratio-based precipitation indices. The existing sediment erosion trend, driven by the amount, intensity, and frequency of extreme precipitation, demands urgency in sediment source management on the Nepal Himalaya’s mountain slopes. The increment in extreme sediment transports partially resulted from anthropogenic interventions, especially landslides triggered by poorly-constructed roads, and the changing nature of extreme precipitation driven by climate variability.


Author(s):  
Kazimierz Banasik ◽  
J. Mitchell

Conceptual model of sedimentgraph from flood events in a small agricultural watershed A procedure for predicting the sediment graph (i.e. the suspended sediment flux), from a small river catchment by heavy rainfall, has been developed using the concept of an instantaneous unit hydrograph (IUH) and dimensionless sediment concentration distribution (DSCD). A formula for instantaneous unit sedimentgraph (IUSG) is presented, and a procedure for estimating the sediment routing coefficient, which is a key parameter of the IUSG, based on measured data of rainfall-runoff-suspended sediment is applied. Field data from a small, field sized agricultural basin, lacated in center of Illinois has been used for analizing lag times for runoff (LAG) and sediment yield (LAGs). Assumptions about sediment generated during rainfall events are discussed.


2020 ◽  
Author(s):  
J. Jotautas Baronas ◽  
Edward T. Tipper ◽  
Michael J. Bickle ◽  
Robert G. Hilton ◽  
Emily I. Stevenson ◽  
...  

<p>A large portion of freshwater and sediment is exported to the ocean by just several of the world's major rivers. Many of these mega-rivers are under significant anthropogenic pressures, such as damming and sand mining, which are having a significant impact on water and sediment delivery to deltaic ecosystems. However, accurately measuring the total sediment flux and its mean physicochemical composition is difficult in large rivers due to hydrodynamic sorting of sediments. To account for this, we developed an updated semi-empirical Rouse modeling framework, which synoptically predicts sediment concentration, grain size distribution, and mean chemical composition (organic carbon wt%, Al/Si ratio) with depth and across the river channel.</p><p>We applied this model to derive new sediment flux estimates for the Irrawaddy and the Salween, the last two free-flowing mega-rivers in Southeast Asia, using a newly collected set of suspended sediment depth samples, coupled to ADCP-measured flow velocity data. Constructing sediment-discharge rating curves, we calculated an annual sediment flux of 326 (68% confidence interval of 256-417) Mt/yr for the Irrawaddy and 159 (109-237) Mt/yr for the Salween, together accounting for 2-3% of total global riverine sediment discharge. The mean flux-weighted sediment exported by the Irrawaddy is significantly coarser (D<sub>84</sub> = 193 ± 13 µm) and OC-poorer (0.29 ± 0.08 wt%) compared to the Salween (112 ± 27 µm and 0.59 ± 0.16 wt%, respectively). Both rivers export similar amounts of particulate organic carbon, with a total of 1.9 (1.0-3.3) Mt C/yr, contributing ~1% of the total riverine POC export to the ocean. These results underline the global significance of the Irrawaddy and Salween rivers and warrant continued monitoring of their sediment fluxes, given the increasing anthropogenic pressures on these river basins.</p>


2020 ◽  
Author(s):  
Colin Phillips ◽  
Carlos Rogéliz ◽  
Daniel Horton ◽  
Jonathan Higgins ◽  
Aaron Packman

<p>Fine particles in rivers comprise a substantial fraction (>50%) of the mass leaving a landscape, while at shorter timescales they represent significant carriers of nutrients and contaminants with the potential to both degrade and enhance aquatic habitats. Predicting fine particle dynamics within rivers remains challenging due to a complex relationship between sediment and water availability from the landscape. This inherent complexity results in watershed-specific understandings of suspended sediment dynamics, typically parameterized as empirical functions of catchment land use, geology, and climate. However, observations of significant fine particle storage within river corridors may indicate that the flux of suspended sediment depends on reach-scale hydraulics. To better understand these dynamics, we synthesized over 40 years of suspended sediment concentration (SSC), hydraulic geometry, river flow, and grainsize data collected by the US Geological Survey from hundreds of rivers spanning a large variety of environments across the continental United States. This data synthesis reveals a strong nonlinear trend between reach-scale hydraulics and the suspended sediment flux, with a secondary dependence on particle properties. The multi-site synthesis reveals that by normalizing the suspended sediment flux by the bankfull shear stress and flux results in a collapse of the observed data onto a single function that describes a self-organizing structure for suspended sediment transport in watersheds. This general relationship indicates strong support for the role of autogenic processes in setting the flux of fine particles and erosion rates of watersheds.</p>


2017 ◽  
Vol 18 ◽  
pp. 35-48
Author(s):  
Niraj Bal Tamang ◽  
Naresh Kazi Tamrakar ◽  
Milan Magar ◽  
Mahesh Raut

Areas near the rivers and streams have been widely used for settlement, development works and agriculture due to availability of the resources such as water, aggregates and comparatively easier terrain. It is very important to understand prevailing fluvial conditions for sustainable output. The fluvial conditions of the Malekhu Watershed including the river characteristics, sediment transport and sediment dynamics were studied. Ten river transects and the corresponding segments of the Malekhu Khola were surveyed for cross-sections and longitudinal profiles. Samples were collected in each of the transects and were analysed for suspended sediment concentration. The riverbed sampling was made using Wolman’s pebble count for establishing grain size distribution. Manning’s roughness coefficients were determined to estimate discharge. The study shows that the Malekhu Khola is a sixth order stream. It has been classified into A4-, B4- and C4-type streams. The hypsometric analysis of the Malekhu Watershed shows that it is in mature stage of erosion. Sediment grain size slightly increases downstream but sorting remains extremely poor to moderately poor. The Malekhu Khola shows eroding tendency at 1.2 km, 16.6 km and 20 km from the origin and brings larger particles only during high flow period at the remaining transects. Mean Suspended Sediment Concentrations (SSC) for the Malekhu Khola was 72.14 mg/L, and it increases with increasing discharge and increasing watershed area and is related to velocity of the river, mining activities and local tributaries.Bulletin of the Department of Geology, Vol. 18, 2015, pp. 35-48


2002 ◽  
Vol 19 (3) ◽  
pp. 367-380 ◽  
Author(s):  
Kyle F. E. Betteridge ◽  
Peter D. Thorne ◽  
Paul S. Bell

Abstract The simultaneous measurement of current flow and suspended sediment concentration in the marine environment is central to the study of sediment transport processes. In view of this, two acoustic approaches for measuring flow were tested in a tidal estuary to assess their capabilities in this environment. A coherent Doppler velocity profiler and a cross-correlation velocity profiler were assessed using conventional current meters and a commercially available acoustic Doppler velocimeter. Mean velocity profiles were obtained up to a range of 1.47 m in 0.046-m range bins over a number of flood tides. The measurements compared well with the reference instruments and regression analysis produced gradients close to unity. Turbulent velocities measured with the coherent Doppler profiler were comparable with turbulent fluctuations measured with the acoustic Doppler velocimeter. The cross-correlation velocity profiler was shown to be unable to measure turbulent velocities. The backscattered signals received on the cross-correlation transducers were also used to compute the sediment concentration profiles using an explicit solution to the acoustic backscatter equation. Combining the concentration and flow measurements enabled sediment flux profiles to be obtained, the results of which compared favorably with flux measurements obtained from the conventional current meters and pumped sampling.


2011 ◽  
Vol 8 (4) ◽  
pp. 7137-7175 ◽  
Author(s):  
F. A. Buschman ◽  
A. J. F. Hoitink ◽  
S. M. de Jong ◽  
P. Hoekstra

Abstract. Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in the tropics. The increasing sediment fluxes pose a threat to coastal marine ecosystems such as coral reefs. This study presents observations of suspended sediment fluxes in the Berau river (Indonesia), which debouches into a coastal ocean that can be considered the preeminent center of coral diversity. The Berau is an example of a small river draining a mountainous, relatively pristine basin that receives abundant rainfall. Flow velocity was measured over a large part of the river width at a station under the influence of tides, using a Horizontal Acoustic Doppler Current Profiler (HADCP). Surrogate measurements of suspended sediment concentration were taken with an Optical Backscatter Sensor (OBS). Tidally averaged suspended sediment concentration increases with river discharge, implying that the tidally averaged suspended sediment flux increases non-linearly with river discharge. Averaged over the 6.5 weeks observations covered by the benchmark survey, the tidally averaged suspended sediment flux was estimated at 2 Mt y−1. Considering the wet conditions during the observation period, this figure may be considered as an upper limit of the yearly averaged flux. This flux is significantly smaller than what could have been expected from the characteristics of the catchment. The consequences of ongoing clearing of rainforest were explored using a plot scale erosion model. When rainforest, which still covered 50–60 % of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment flux in the Berau river would impose a severe sediment stress on the global hotspot of coral reef diversity. The impact of land cover changes will largely depend on the degree in which the Berau estuary acts as a sediment trap.


2018 ◽  
Author(s):  
Jérémy Lepesqueur ◽  
Renaud Hostache ◽  
Núria Martínez-Carreras ◽  
Emmanuelle Montargès-Pelletier ◽  
Christophe Hissler

Abstract. Hydromorphodynamic models are powerful tools to predict the potential mobilization and transport of sediment in river ecosystems. Recent studies even showed that they are able to satisfyingly predict suspended sediment matter concentration in small river systems. However, modelling exercises often neglect suspended sediment properties (e.g. particle site distribution and density), even though such properties are known to directly control the sediment particle dynamics in the water column during rising and flood events. This study has two objectives. On the one hand, it aims at further developing an existing hydromorphodynamic model based on the dynamic coupling of TELEMAC-3D (v7p1) and SISYPHE (v7p1) in order to enable an enhanced parameterisation of the sediment grain size distribution with distributed sediment density. On the other hand, it aims at evaluating and discussing the added-value of the new development for improving sediment transport and riverbed evolution predictions. To this end, we evaluate the sensitivity of the model to sediment grain size distribution, sediment density and suspended sediment concentration at the upstream boundary condition. As a test case, the model is used to simulate a flood event in a small scale river, the Orne River in North-eastern France. The results show substantial discrepancies in bathymetry evolution depending on the model setup. Moreover, the sediment model based on an enhanced sediment grain size distribution (10 classes) and with distributed sediment density outperforms the model with only two sediment grain size classes in terms of simulated suspended sediment concentration.


Sign in / Sign up

Export Citation Format

Share Document