scholarly journals High-Resolution North Sulawesi Drought Hazzard Mapping Based on Consecutive Dry Days (CDD)

2021 ◽  
Vol 893 (1) ◽  
pp. 012018
Author(s):  
A M Setiawan ◽  
A A Syafrianno ◽  
R Rahmat ◽  
Supari

Abstract North Sulawesi is one of the Province in northern Indonesia with high spatial annual rainfall variations and influenced by global climate anomaly that can lead to extreme events and disaster occurrence, such as flood, landslide, drought, etc. The purpose of this study is to generate high-resolution meteorological hazard map based on long-term historical consecutive dry days (CDD) over the North Sulawesi region. CDD was calculated based on observed daily precipitation data from Indonesia Agency for Meteorology, Climatology, and Geophysics (BMKG) surface observation station network (CDDobs) and the daily-improved Climate Hazards group Infrared Precipitation with Stations (CHIRPS) version 2.0 (CDDCHIRPS) during 1981 – 2010 period. The Japanese 55-year Reanalysis (JRA-55) data obtained from iTacs (Interactive Tool for Analysis of the Climate System) with the same time scale period also used to explain physical – dynamical atmospheric properties related to drought hazard over this region. The Geostatistical approach using regression kriging method was applied as spatial interpolation technique to generate high resolution gridded (0.05° × 0.05°) drought hazard map. This method combines a regression of CDDobs as dependent variable (target variable) on CDDCHIRPS as predictors with kriging of the prediction residuals. The results show that most of the areas were categorized as medium drought hazard level with CDD values ranging from 80-100 days. Meanwhile, small islands around main Sulawesi island such as Sangihe and Karakelong island are dominated by low drought hazard levels with CDD values ranging from 50-60 days. The highest levels of drought hazard area are located in South Bolaang Mongondow Regency.

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2622
Author(s):  
Zhu Li ◽  
Honghu Liu

Global climate change is significant, and the spatiotemporal variations of precipitation associated with it are pronounced. Based on the daily precipitation data from 10 weather stations located from southeast to northwest across China from 1961–2017, the Mann–Kendall trend test was generally applied to analyze the spatiotemporal variations of precipitation. The factors influencing the precipitation changes were investigated. The results revealed that (1) the annual, summer, and winter rainfall amount (RA) exhibited increasing rates of 16.36, 12.31, and 2.49 mm/10 year, respectively. The change rates of annual rainfall days (RD) were 2.68 day/10 year in the northwest region and −1.88 day/10 year in the southeast. The annual and seasonal daily precipitation on rainy days (RP) exhibited an increasing trend. (2) All of the RA, RD, and RP values initially increased, then decreased, and then slightly increased from Southeast to Northwest China. These results proved that the RA increased with the increase of light rain in Northwest China and heavy rain in Southeast China. In addition, changes in the monsoon have altered the rate at which RA, RD, and RP vary with distance from the sea. These findings may help to provide suggestions for the rational spatial utilization of water resources in China.


2021 ◽  
Vol 93 (1) ◽  
pp. 43-58
Author(s):  
Oleh Skrynyk ◽  
Krzysztof Błażejczyk

While significant increases in air temperature are being observed in the context of climate change, precipitation characteristics, indicators and indices seem to be changing in a more regionally-variable manner. High-mountain areas prove particularly subject to fluctuations and changes of climate, given that mountains serve as barriers to masses of air flowing over them, with the result that atmospheric precipitation totals are high in the context of the so-called orographic rainfall. Overall, the Chornohora represents the highest range anywhere in Ukraine’s Carpathian Mts, as there are six peaks over 2000 m a.s.l. capable of serving as a barrier running NW-SE. Nevertheless, the main ridge of the High Tatras (of the Slovakia-Poland borderland) is even higher and runs W-E. Each massif is some 30 km in length, while the two ranges are separated by a distance of almost 350 km. Main drainage divides run along the highest ridges here, with the Tatras separating the drainage basins of the Vistula and Danube, while the Chornohora represent a divide between the Prut and Tysa basins. The aim here has been to present characteristics of atmospheric precipitation in Tatra and Chornohora Mts. as these are seen to relate to atmospheric circulation. To this end, the dependent relationship between intensity of precipitation and atmospheric circulation was examined exhaustively, with changes in the latter considered from the point of view of intensity of precipitation in the massifs under study, and with trends for precipitation over the study period also looked for.The Niedźwiedź (2017) classification of types of atmospheric circulation was applied, with annual values calculated for circulation indicators P (a W-E inflow), S (a S-N inflow) and C (a cyclonic/anticyclonic inflow). Overall, the study drew on 1961‑2015 daily precipitation data from the north-eastern slope of Chornohora Mts. (as represented by Ukraine’s Pozhyzhevska weather station, PO, 1451 m a.s.l.), as well as the north slope of the Tatra Mts. (as represented by Poland’s Hala Gasienicowa weather station, HG, 1520 m a.s.l.).An air inflow from western directions was found to have prevailed over 28% of the days in the average year (Fig. 1). The most frequent types involved here were: Ka (12%), Bc (10%), Wc (10%) and Wa (8%). During the summer months (JJA), it is the Ka and Bc types that are even more frequent (present on approx. 15% of summer days). Types Wc and Wa in turn occur more frequently in winter (DJF) – respectively 13% and 12% of the time. In autumn, these types reach a level of occurrence around 10%.At 1712 mm, the average annual rainfall total for Tatra Mts is higher than that for the Chornohora (on 1446 mm). While the seasonal distribution of rainfall in spring and autumn looks almost the same in the two massifs, winter brings more precipitation in the Chornohora, while summer is a wetter season in the Tatras (Fig. 2). Largest amounts of precipitation nevertheless fall in the warm half-year, in the circumstances of N+NEa advection, cyclonic situations and under arctic, polar-marine or polar-marine transformed air masses (Figs. 3 and 4).The largest changes over time are to be observed for the zonal inflow index (P) and the cyclonic index (C). The P index points to increased numbers of days with a western circulation, while the C index confirms the domination of anticyclonic circulation (Fig. 5). The trend for annual rainfall totals is an upward one overall in both regions, but in neither does this achieve statistical significance (Fig. 6). Equally, there is a downward trend line for numbers of days featuring precipitation (RRdays) in the cases of both the Chornohora and Tatra ranges (equal to -7.3 days/10 years and -7.59 days/10 years respectively) (Fig. 7). On the other hand, the trend for numbers of days with higher rainfall, e.g. with RRdays>10mm is upward for the Chornohora (at +1.23 days/10 years), but downward for the Tatra Mts (at -0.6 days/10 years) (Fig. 8).


Oseanika ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Dwi Haryanto ◽  
Muhamad Irfan ◽  
Taufan Wiguna ◽  
Hendra Kurnia Febriawan

The application of multibeam echosounder for seabed topography has been developing rapidly. Multibeam echosounder is a very efficient way to get a wide seabed topography coverage for each ping, so it can produce high-resolution seabed topography maps. These maps can be used as a reference for further investigation or exploration, for example geological studies, marine habitats and others. RV Baruna Jaya IV is operated by Laboratory for Marine Survey Technology – BPPT that have been hull mounted equipped a Germany technology multibeam echosunder Seabeam 1050D system. The Seabeam 1050D allow to sweep measuring the seabed topography using 126 beams simultaneously from port to starboard sites. R.V. Baruna Jaya IV and the Okeanos Explorer of NOAA have been conducted joint Indonesia - U.S. Expedition to Sangihe Talaud waters (INDEX SATAL) in the north area of the North Sulawesi Province during July - August, 2010. Seabed topography of less than 2000 metres were recorded by Seabeam 1050D system, the area of larger depths of 2000 metres to 6000 metres recorded by Simrad EM-302 from Okeanos Explorer. The seabed topography in Sangihe Talaud waters has a varied seabed topography. The new discovery that showed on the map is a 1600 m height of seamount, risen up from the depth of 2300m to 710m. Others geological seabed can be identified according to high resolution bathymetry map resulted from this study.Keywords: multibeam echosounder, seabed topography, seamount, Sangihe Talaud


2018 ◽  
Author(s):  
Lovisa Waldrop Bergman ◽  
Céline Heuzé

Abstract. Nares Strait in northwest Greenland is one of the main gateways for oceanic freshwater and heat exchanges between the Arctic and the North Atlantic. With a changing Arctic climate, understanding the processes that govern the oceanic circulation in Arctic straits has become crucial and urgent, but this cannot be done with current geographically and temporally sparse in-situ observations only. High resolution regional modelling is thus required, but costly. We here report on one-year sensitivity experiments performed with the coupled ice-ocean regional model MITgcm to determine the relative importance of wind forcing, initial stratification and sea ice thickness on the accuracy of the modelled oceanic circulation in Nares Strait. We find that the modelled basin's circulation is mainly driven by density gradients in the upper oceanic layer, making accurate initial fields of temperature and salinity essential for a realistic oceanic circulation. The influence of the wind and sea ice thickness is less important, potentially making such high resolution fields not necessary for accurate strait modelling, provided these results are valid for other sea ice models as well. Comparison with ship-based measurements collected in summer 2015 reveals the experiments to be too cold at the surface, probably because of a not-dynamic-enough sea ice cover. Although the modelled freshwater is rather accurate, large efforts need to be put into observing the ocean and the sources of freshwater continuously throughout the year to produce realistic and efficient model simulations of the Arctic Straits, key players in the entire Arctic system and global climate.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 200 ◽  
Author(s):  
Zhijia Gu ◽  
Detai Feng ◽  
Xingwu Duan ◽  
Kuifang Gong ◽  
Yawen Li ◽  
...  

The Tibetan Plateau is influenced by global climate change which results in frequent melting of glaciers and snow, and in heavy rainfalls. These conditions may increase the risk of soil erosion, but prediction is not feasible due to scarcity of rainfall data in the high altitudes of the region. In this study, daily precipitation data from 1 January 1981 to 31 December 2015 were selected for 38 meteorological stations in the Tibetan Plateau, and annual and seasonal rainfall erosivity were calculated for each station. Additionally, we used the Mann–Kendall trend test, Sen’s slope, trend coefficient, and climate tendency rate indicators to detect the temporal variation trend of rainfall erosivity. The results showed that the spatial distribution of rainfall erosivity in the Tibetan Plateau exhibited a significant decreasing trend from southeast to northwest. The average annual rainfall erosivity is 714 MJ·mm·ha−1·h−1, and varies from 61 to 1776 MJ·mm·ha−1·h−1. Rainfall erosivity was mainly concentrated in summer and autumn, accounting for 67.5% and 18.5%, respectively. In addition, annual, spring, and summer rainfall erosivity were increasing, with spring rainfall erosivity highly significant. Temporal and spatial patterns of rainfall erosivity indicated that the risk of soil erosion was relatively high in the Hengduan mountains in the eastern Tibetan Plateau, as well as in the Yarlung Zangbo River Valley and its vicinity.


2011 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Antonella Sanna ◽  
Edoardo Bucchignani ◽  
Myriam Montesarchio

1970 ◽  
Vol 36 ◽  
pp. 271-273
Author(s):  
B. B. Jones ◽  
B. C. Boland ◽  
R. Wilson ◽  
S. T. F. Engstrom

A high-resolution solar spectrum in the range 2000–2200 Å was obtained in a recent flight of a sunpointing Skylark rocket. This was launched at 04.21 hr UT on April 22, 1969 from Woomera and reached an apogee of 178 km. An optical alignment system operating on the main vehicle pointing system gave a net stabilisation of ±3 arc sec in the position of the solar image relative to the spectrograph slit. The slit, of length 1.0 mm, was set in the north-east quadrant parallel to and 5 arc min from the north/south axis, its lower edge being 1 arc min from the equator. The roll control of ±2.5° was provided entirely by the standard Elliott Bros. type of vehicle stabilisation.


2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


Sign in / Sign up

Export Citation Format

Share Document