scholarly journals Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway

2021 ◽  
Author(s):  
Peng Nan ◽  
Xiu Dong ◽  
Xiaofeng Bai ◽  
Haizhen Lu ◽  
Fang Liu ◽  
...  
Author(s):  
Priyanka Grover ◽  
Sritama Nath ◽  
Mukulika Bose ◽  
Alexa J. Sanders ◽  
Cory Brouwer ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDA) is one of the most lethal human cancers. Transforming Growth Factor Beta (TGF-β) is a cytokine that switches from a tumor-suppressor to a tumor promoter throughout tumor development, by a yet unknown mechanism. Tumor associated MUC1 (tMUC1) is aberrantly glycosylated and overexpressed in >80% of PDAs and is associated with poor prognosis. The cytoplasmic tail of MUC1 (MUC1-CT) interacts with other oncogenic proteins promoting tumor progression and metastasis. We hypothesize that tMUC1 levels regulate TGF-β functions in PDA in vitro and in vivo. We report that high-tMUC1 expression positively correlates to TGF-βRII and negatively to TGF-βRI receptors. In response to TGF-β1, high tMUC1 expressing PDA cells undergo c-Src phosphorylation, and activation of the Erk/MAPK pathway; while low tMUC1 expressing cells activate the Smad2/3 pathway, enhancing cell death. Correspondingly, mice bearing tMUC1-high tumors responded to TGF-β1 neutralizing antibody in vivo showing significantly retarded tumor growth. Analysis of clinical data from TCGA revealed significant alterations in gene-gene correlations in the TGF-β pathway in tMUC1 high versus tMUC1 low samples. This study deepens our understanding of tMUC1-regulated TGF-β’s paradoxical function in PDA and establishes tMUC1 as a potential biomarker to predict response to TGF-β-targeted therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander G. Raufi ◽  
Nicholas R. Liguori ◽  
Lindsey Carlsen ◽  
Cassandra Parker ◽  
Liz Hernandez Borrero ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.


2021 ◽  
Author(s):  
Katrin J Ciecielski ◽  
Antonio Mulero-Sanchez ◽  
Alexandra Berninger ◽  
Laura Ruiz Canas ◽  
Astrid Bosma ◽  
...  

Mutant KRAS is present in over 90% of pancreatic as well as 30-40% of lung and colorectal cancers and is one of the most common oncogenic drivers. Despite decades of research and the recent emergence of isoform-specific KRASG12C-inhibitors, most mutant KRAS isoforms, including the ones frequently associated with pancreatic ductal adenocarcinoma (PDAC), cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive mechanisms leading to tumor recurrence or resistance. We report here on the combined inhibition of SHP2, a non-receptor tyrosine phosphatase upstream of KRAS, and ERK, a serine/threonine kinase and a key molecule downstream of KRAS in PDAC. This combination shows synergistic anticancer activity in vitro, superior disruption of the MAPK pathway, and significantly increased apoptosis induction compared to single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination. Concurrent inhibition of SHP2 and ERK induces significant tumor regression in multiple PDAC mouse models. Finally, we show evidence that 18F-FDG PET scans can be used to detect and predict early drug responses in animal models. Based on these compelling results, we will investigate this drug combination in a clinical trial (SHERPA, SHP2 and ERK inhibition in pancreatic cancer, NCT04916236), enrolling patients with KRAS-mutant PDAC.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1825 ◽  
Author(s):  
Alexandros Papalampros ◽  
Michail Vailas ◽  
Konstantinos Ntostoglou ◽  
Maria Lopez Chiloeches ◽  
Stratigoula Sakellariou ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is resistant to single-agent immunotherapies. To understand the mechanisms leading to the poor response to this treatment, a better understanding of the PDAC immune landscape is required. The present work aims to study the immune profile in PDAC in relationship to spatial heterogeneity of the tissue microenvironment (TME) in intact tissues. Methods: Serial section and multiplex in situ analysis were performed in 42 PDAC samples to assess gene and protein expression at single-cell resolution in the: (a) tumor center (TC), (b) invasive front (IF), (c) normal parenchyma adjacent to the tumor, and (d) tumor positive and negative draining lymph nodes (LNs). Results: We observed: (a) enrichment of T cell subpopulations with exhausted and senescent phenotype in the TC, IF and tumor positive LNs; (b) a dominant type 2 immune response in the TME, which is more pronounced in the TC; (c) an emerging role of CD47-SIRPα axis; and (d) a similar immune cell topography independently of the neoadjuvant chemotherapy. Conclusion: This study reveals the existence of dysfunctional T lymphocytes with specific spatial distribution, thus opening a new dimension both conceptually and mechanistically in tumor-stroma interaction in PDAC with potential impact on the efficacy of immune-regulatory therapeutic modalities.


2020 ◽  
Author(s):  
Gokce Askan ◽  
Ibrahim Halil Sahin ◽  
Joanne F. Chou ◽  
Aslihan Yavas ◽  
Marinela Capanu ◽  
...  

Abstract Background: Herein, we investigate the relationship between pancreatic stem cell markers (PCSC markers), CD44, and epithelial-specific antigen (ESA), tumor stroma, and the impact on recurrence outcomes in pancreatic ductal adenocarcinoma (PDAC) patients.Methods: PDAC patients who underwent surgical resection between 01/2012 -06/2014 were identified. CD44 and ESA expression was assessed by immunohistochemistry. Stroma was classified as loose, moderate, and dense based on fibroblast content. Overall survival (OS) and relapse-free survival (RFS) were estimated using the Kaplan-Meier method and compared between subgroups by log-rank test. The association between PCSC markers and stroma type was assessed by Fisher`s exact test. Results: N= 93 PDAC patients were identified. The number of PDAC patients with dense, moderate density, and loose stroma was 11 (12%), 51 (54%), and 31 (33%) respectively. PDAC with CD44+/ESA- had highest rate of loose stroma (63%) followed by PDAC CD44+/ESA+ (50%), PDAC CD44-/ESA+ (35%), CD44-/ESA- (9%) (p=0.0033). No local recurrence was observed in patients with dense stroma and 9 had distant recurrence. The highest rate of cumulative local recurrence observed in patients with loose stroma. No statistically significant difference in RFS and OS were observed among subgroups (P=0.089). Conclusions: These data indicate PCSCs may have an important role in stroma differentiation in PDAC. Although not reaching statistical significance, we observed more local recurrences in patients with loose stroma, and no local recurrence was seen in patients with dense stroma suggesting tumor stroma may influence the recurrence pattern in PDAC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yinghao Meng ◽  
Hao Zhang ◽  
Qi Li ◽  
Fang Liu ◽  
Xu Fang ◽  
...  

PurposeTo develop and validate a machine learning classifier based on multidetector computed tomography (MDCT), for the preoperative prediction of tumor–stroma ratio (TSR) expression in patients with pancreatic ductal adenocarcinoma (PDAC).Materials and MethodsIn this retrospective study, 227 patients with PDAC underwent an MDCT scan and surgical resection. We quantified the TSR by using hematoxylin and eosin staining and extracted 1409 arterial and portal venous phase radiomics features for each patient, respectively. Moreover, we used the least absolute shrinkage and selection operator logistic regression algorithm to reduce the features. The extreme gradient boosting (XGBoost) was developed using a training set consisting of 167 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 60 consecutive patients, admitted between January 2018 and April 2018. We determined the XGBoost classifier performance based on its discriminative ability, calibration, and clinical utility.ResultsWe observed low and high TSR in 91 (40.09%) and 136 (59.91%) patients, respectively. A log-rank test revealed significantly longer survival for patients in the TSR-low group than those in the TSR-high group. The prediction model revealed good discrimination in the training (area under the curve [AUC]= 0.93) and moderate discrimination in the validation set (AUC= 0.63). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 94.06%, 81.82%, 0.89, 0.89, and 0.90, respectively, those for the validation set were 85.71%, 48.00%, 0.70, 0.70, and 0.71, respectively.ConclusionsThe CT radiomics-based XGBoost classifier provides a potentially valuable noninvasive tool to predict TSR in patients with PDAC and optimize risk stratification.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gokce Askan ◽  
Ibrahim Halil. Sahin ◽  
Joanne F. Chou ◽  
Aslihan Yavas ◽  
Marinela Capanu ◽  
...  

Abstract Background Herein, we investigate the relationship between pancreatic stem cell markers (PCSC markers), CD44, and epithelial-specific antigen (ESA), tumor stroma, and the impact on recurrence outcomes in pancreatic ductal adenocarcinoma (PDAC) patients. Methods PDAC patients who underwent surgical resection between 01/2012–06/2014 were identified. CD44 and ESA expression was assessed by immunohistochemistry. Stroma was classified as loose, moderate, and dense based on fibroblast content. Overall survival (OS) and relapse-free survival (RFS) were estimated using the Kaplan-Meier method and compared between subgroups by log-rank test. The association between PCSC markers and stroma type was assessed by Fisher’s exact test. Results N = 93 PDAC patients were identified. The number of PDAC patients with dense, moderate density, and loose stroma was 11 (12%), 51 (54%), and 31 (33%) respectively. PDAC with CD44+/ESA− had highest rate of loose stroma (63%) followed by PDAC CD44+/ESA+ (50%), PDAC CD44−/ESA+ (35%), CD44−/ESA− (9%) (p = 0.0033). Conversely, lack of CD44 and ESA expression was associated with the highest rate of moderate and dense stroma (91% p = 0.0033). No local recurrence was observed in patients with dense stroma and 9 had distant recurrence. The highest rate of cumulative local recurrence was observed in patients with loose stroma. No statistically significant difference in RFS and OS was observed among subgroups (P = 0.089). Conclusions These data indicate PCSCs may have an important role in stroma differentiation in PDAC. Our results further suggest that tumor stroma may influence the recurrence pattern in PDAC patients.


Sign in / Sign up

Export Citation Format

Share Document