scholarly journals Memory effects in friction: the role of sliding heterogeneities

Author(s):  
Vincenzo Fazio ◽  
Vito Acito ◽  
Fabien Amiot ◽  
Christian Frétigny ◽  
Antoine Chateauminois

We report on memory effects involved in the unsteady-state frictional response of a contact interface between a silicone rubber and a spherical glass probe when it is perturbed by changes in the orientation of the driving motion or by velocity steps. From measurements of the displacement fields at the interface, we show that observed memory effects can be accounted for by the non-uniform distribution of the sliding velocity within the contact interface. As a consequence of these memory effects, the friction force may no longer be aligned with respect to the sliding trajectory. In addition, stick–slip motions with a purely geometrical origin are also evidenced. These observations are adequately accounted for by a friction model that takes into account heterogeneous displacements within the contact area. When a velocity dependence of the frictional stress is incorporated in this model, unsteady-state regimes induced by velocity steps are also adequately described. The good agreement between the model and experiments outlines the role of space heterogeneities in memory effects involved in soft matter friction.

Author(s):  
J. W. Li ◽  
W. J. Zhang ◽  
Q. S. Zhang ◽  
X. B. Chen ◽  
S. D. Tu

It was found experimentally from our previous study that the operation of the piezoelectric actuator (PEA) and the friction in the piezoelectric stick-slip actuator (PE-SSA) can cause significant rise in temperature, thereby degrading the performance of the actuator. This paper presents a dynamic model for the PE-SSA by taking into account thermal effect. In particular, the dynamic model is developed by integrating the PEA model proposed by Adriaens et al. [1] and the LuGre friction model proposed by De Wit et al. [2]; the parameters involved in the models are determined using a system identification approach. Experiments are carried out to verify the effectiveness of the model. It is shown that the simulation and experimental results are in a good agreement. This study provides a new way to model thermal effect for other micro motion systems.


2018 ◽  
Vol 32 (02) ◽  
pp. 1750345 ◽  
Author(s):  
Vinit Gupta ◽  
Arun K. Singh

In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 215
Author(s):  
Paul McGinn ◽  
Daniel Pearce ◽  
Yannis Hardalupas ◽  
Alex Taylor ◽  
Konstantina Vogiatzaki

This paper provides new physical insight into the coupling between flow dynamics and cavitation bubble cloud behaviour at conditions relevant to both cavitation inception and the more complex phenomenon of flow “choking” using a multiphase compressible framework. Understanding the cavitation bubble cloud process and the parameters that determine its break-off frequency is important for control of phenomena such as structure vibration and erosion. Initially, the role of the pressure waves in the flow development is investigated. We highlight the differences between “physical” and “artificial” numerical waves by comparing cases with different boundary and differencing schemes. We analyse in detail the prediction of the coupling of flow and cavitation dynamics in a micro-channel 20 m high containing Diesel at pressure differences 7 MPa and 8.5 MPa, corresponding to cavitation inception and "choking" conditions respectively. The results have a very good agreement with experimental data and demonstrate that pressure wave dynamics, rather than the “re-entrant jet dynamics” suggested by previous studies, determine the characteristics of the bubble cloud dynamics under “choking” conditions.


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 38-49
Author(s):  
Lakhdar Benhamed ◽  
Sidi Mohamed Mekelleche ◽  
Wafaa Benchouk

Experimentally, a reversal of chemoselectivity has been observed in catalyzed Diels–Alder reactions of α,β-unsaturated aldehydes (e.g., (2E)-but-2-enal) and ketones (e.g., 2-hexen-4-one) with cyclopentadiene. Indeed, using the triflimidic Brønsted acid Tf2NH as catalyst, the reaction gave a Diels–Alder adduct derived from α,β-unsaturated ketone as a major product. On the other hand, the use of tris(pentafluorophenyl)borane B(C6F5)3 bulky Lewis acid as catalyst gave mainly the cycloadduct of α,β-unsaturated aldehyde as a major product. Our aim in the present work is to put in evidence the role of the catalyst in the reversal of the chemoselectivity of the catalyzed Diels–Alder reactions of (2E)-but-2-enal and 2-Hexen-4-one with cyclopentadiene. The calculations were performed at the ωB97XD/6-311G(d,p) level of theory and the solvent effects of dichloromethane were taken into account using the PCM solvation model. The obtained results are in good agreement with experimental outcomes.


2021 ◽  
Author(s):  
Ignazio Giuntoli ◽  
Federico Fabiano ◽  
Susanna Corti

AbstractSeasonal predictions in the Mediterranean region have relevant socio-economic implications, especially in the context of a changing climate. To date, sources of predictability have not been sufficiently investigated at the seasonal scale in this region. To fill this gap, we explore sources of predictability using a weather regimes (WRs) framework. The role of WRs in influencing regional weather patterns in the climate state has generated interest in assessing the ability of climate models to reproduce them. We identify four Mediterranean WRs for the winter (DJF) season and explore their sources of predictability looking at teleconnections with sea surface temperature (SST). In particular, we assess how SST anomalies affect the WRs frequencies during winter focussing on the two WRs that are associated with the teleconnections in which the signal is more intense: the Meridional and the Anticyclonic regimes. These sources of predictability are sought in five state-of-the-art seasonal forecasting systems included in the Copernicus Climate Change Services (C3S) suite finding a weaker signal but an overall good agreement with reanalysis data. Finally, we assess the ability of the C3S models in reproducing the reanalysis data WRs frequencies finding that their moderate skill increases during ENSO intense years, indicating that this teleconnection is well reproduced by the models and yields improved predictability in the Mediterranean region.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


2015 ◽  
Vol 642 ◽  
pp. 8-12
Author(s):  
William W.F. Chong ◽  
Miguel de La Cruz

The paper introduces an alternative approach to predict boundary friction for rough surfaces at micros-scale through the empirical integration of asperity-like nanoscale friction measurements. The nanoscale friction is measured using an atomic force microscope (AFM) tip sliding on a steel plate, confining the test lubricant, i.e. base oil for the fully formulated SAE grade 10w40. The approach, based on the Greenwood and Tripp’s friction model, is combined with the modified Elrod’s cavitation algorithm in order to predict the friction generated by a slider-bearing test rig. The numerical simulation results, using an improved boundary friction model, showed good agreement with the measured friction data.


Author(s):  
Lars A. A. Beex ◽  
Ron H. J. Peerlings

Laminated paperboard is used as a packaging material for a wide range of products. During production of the packaging, the fold lines are first defined in a so-called creasing (or scoring) operation in order to obtain uncracked folds. During creasing as well as folding, cracking of the board is to be avoided. A mechanical model for a single fold line has been proposed in a previous study (Beex & Peerlings 2009 Int. J. Solids Struct. 46 , 4192–4207) to investigate the general mechanics of creasing and folding, as well as which precise mechanisms trigger the breaking of the top layer. In the present study, we employ this modelling to study the influence of delamination on creasing and folding. The results reveal the separate role of the cohesive zone model and the friction model in the description of delamination. They also show how the amount of delamination behaviour should be controlled to obtain the desired high folding stiffness without breaking of the top layer.


Sign in / Sign up

Export Citation Format

Share Document