scholarly journals A Systematic Study to Assess Displacement Performance of a Naturally-Derived Surfactant in Flow Porous Systems

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8310
Author(s):  
Aghil Moslemizadeh ◽  
Hossein Khayati ◽  
Mohammad Madani ◽  
Mehdi Ghasemi ◽  
Khalil Shahbazi ◽  
...  

For the first time, the present work assesses the feasibility of using Korean red ginseng root extract, a non-ionic surfactant, for the purposes of enhanced oil recovery (EOR). The surfactant is characterized by Fourier-transform infrared spectroscopy (FT-IR) analysis. Pendant drop and sessile drop techniques are employed to study the oil–water interfacial tension (IFT) and wettability nature of the sandstone rock, respectively. In addition, oil recovery enhancement is investigated using micromodel and core floods. In the salt-free system, IFT measurements indicate that the surfactant carries a critical micelle concentration of 5 g/L. In a saline medium (up to 50 g/L), the addition of a surfactant with different concentrations leads to an IFT reduction of 47.28–84.21%. In a constant surfactant concentration, a contact angle reduction is observed in the range of 5.61–9.30°, depending on salinity rate, revealing a wettability alteration toward more water-wet. Surfactant flooding in the glass micromodel provides a more uniform sweeping, which leads to an oil recovery enhancement of 3.02–11.19%, depending on the extent of salinity. An optimal salt concentration equal to 30 g/L can be recognized according to the results of previous tests. Surfactant flooding (10 g/L) in optimal salt concentration achieves an additional oil recovery of 7.52% after conventional water flooding.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3988 ◽  
Author(s):  
Omid Haghighi ◽  
Ghasem Zargar ◽  
Abbas Khaksar Manshad ◽  
Muhammad Ali ◽  
Mohammad Takassi ◽  
...  

Production from mature oil reservoirs can be optimized by using the surfactant flooding technique. This can be achieved by reducing oil and water interfacial tension (IFT) and modifying wettability to hydrophilic conditions. In this study, a novel green non-ionic surfactant (dodecanoyl-glucosamine surfactant) was synthesized and used to modify the wettability of carbonate reservoirs to hydrophilic conditions as well as to decrease the IFT of hydrophobic oil–water systems. The synthesized non-ionic surfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and chemical shift nuclear magnetic resonance (HNMR) analyses. Further pH, turbidity, density, and conductivity were investigated to measure the critical micelle concentration (CMC) of surfactant solutions. The result shows that this surfactant alters wettability from 148.93° to 65.54° and IFT from 30 to 14 dynes/cm. Core-flooding results have shown that oil recovery was increased from 40% (by water flooding) to 59% (by surfactant flooding). In addition, it is identified that this novel non-ionic surfactant can be used in CO2 storage applications due to its ability to alter the hydrophobicity into hydrophilicity of the reservoir rocks.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


2020 ◽  
Vol 17 (3) ◽  
pp. 749-758
Author(s):  
Omolbanin Seiedi ◽  
Mohammad Zahedzadeh ◽  
Emad Roayaei ◽  
Morteza Aminnaji ◽  
Hossein Fazeli

AbstractWater flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs. The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs. During seawater injection in carbonate formations, the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition. This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years. The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique. Further, the characterization of the rock surface is evaluated by molecular kinetic theory (MKT) modeling. The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process. While the wettability of low permeable samples changes to be slightly water-wet, the wettability of the samples with higher permeability remains unchanged after soaking in seawater. Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant.


2000 ◽  
Vol 3 (02) ◽  
pp. 139-149 ◽  
Author(s):  
Li Kewen ◽  
Firoozabadi Abbas

Summary In a recent theoretical study, Li and Firoozabadi [Li, K. and Firoozabadi, A.: "Phenomenological Modeling of Critical-Condensate Saturation and Relative Permeabilities in Gas-Condensate Systems," paper SPE 56014 available from SPE, Richardson, Texas (2000)] showed that if the wettability of porous media can be altered from preferential liquid-wetting to preferential gas-wetting, then gas-well deliverability in gas-condensate reservoirs can be increased. In this article, we present the results that the wettability of porous media may indeed be altered from preferential liquid-wetting to preferential gas-wetting. In the petroleum literature, it is often assumed that the contact angle through liquid-phase ? is equal to 0° for gas-liquid systems in rocks. As this work will show, while ? is always small, it may not always be zero. In laboratory experiments, we altered the wettability of porous media to preferential gas-wetting by using two chemicals, FC754 and FC722. Results show that in the glass capillary tube ? can be altered from about 50 to 90° and from 0 to 60° by FC754 for water-air and normal decane-air systems, respectively. While untreated Berea saturated with air has a 60% imbibition of water, its imbibition of water after chemical treatment is almost zero and its imbibition of normal decane is substantially reduced. FC722 has a more pronounced effect on the wettability alteration to preferential gas-wetting. In a glass capillary tube ? is altered from 50 to 120° and from 0 to 60° for water-air and normal decane-air systems, respectively. Similarly, because of wettability alteration with FC722, there is no imbibition of either oil or water in both Berea and chalk samples with or without initial brine saturation. Entry capillary pressure measurements in Berea and chalk give a clear demonstration that the wettability of porous media can be permanently altered to preferential gas-wetting. Introduction In a theoretical work,1 we have modeled gas and liquid relative permeabilities for gas-condensate systems in a simple network. The results imply that when one alters the wettability of porous media from strongly non-gas-wetting to preferential gas-wetting or intermediate gas-wetting, there may be a substantial increase in gas-well deliverability. The increase in gas-well deliverability of gas-condensate reservoirs is our main motivation for altering the wettability of porous media to preferential gas-wetting. Certain gas-condensate reservoirs experience a sharp drop in gas-well deliverability when the reservoir pressure drops below the dewpoint.2–4 Examples include many rich gas-condensate reservoirs that have a permeability of less than 100 md. In these reservoirs, it seems that the viscous forces alone cannot enhance gas-well deliverability. One may suggest removing liquid around the wellbore via phase-behavior effects through CO2 and propane injection. Both have been tried in the field with limited success; the effect of fluid injection around the wellbore for the removal of the condensate liquid is temporary. Wettability alteration can be a very important method for the enhancement of gas-well deliverability. If one can alter the wettability of the wellbore region to intermediate gas-wetting, gas may flow efficiently in porous media. As early as 1941, Buckley and Leverett5 recognized the importance of wettability on water flooding performance. Later, many authors studied the effect of wettability on capillary pressure, relative permeability, initial water saturation, residual oil saturation, oil recovery, electrical properties of reservoir rocks, reserves, and well stimulation.6–16 reported that it might be possible to improve oil displacement efficiency by wettability adjustment during water flooding. In 1967, Froning and Leach8 reported a field test in Clearfork and Gallup reservoirs for improving oil recovery by wettability alteration. Kamath9 then reviewed wettability detergent flooding. He noted that it was difficult to draw a definite conclusion regarding the success of detergent floods from the data available in the literature. Penny et al.12 presented a technique to improve well stimulation by changing the wettability for gas-water-rock systems. They added a surfactant in the fracturing fluid. This yielded impressive results; the production following cleanup after fracturing in gas wells generally was 2 to 3 times greater than field averages or offset wells treated with conventional techniques. Penny et al.12 believed that increased production was due to wettability alteration. However, they did not demonstrate that wettability had been altered. Recently, Wardlaw and McKellar17 reported that only 11% pore volume (PV) water imbibed into the Devonian dolomite samples with bitumen. The water imbibition test was conducted vertically in a dry core (saturated with air). Based on the imbibition experiments, they pointed out that many gas reservoirs in the western Alberta foothills of the Rocky Mountains were partially dehydrated and their wettability altered to a weakly water-wet or strongly oil-wet condition due to bitumen deposits on the pores. The water imbibition results of Wardlaw and McKellar17 demonstrated that the inappropriate hypothesis for wetting properties of gas reservoirs might lead to underestimation of hydrocarbon reserves.


2020 ◽  
Vol 10 (17) ◽  
pp. 6087
Author(s):  
Mariam Shakeel ◽  
Peyman Pourafshary ◽  
Muhammad Rehan Hashmet

The fast depletion of oil reserves has steered the petroleum industry towards developing novel and cost-effective enhanced oil recovery (EOR) techniques in order to get the most out of reservoirs. Engineered water–polymer flooding (EWPF) is an emerging hybrid EOR technology that uses the synergetic effects of engineered water (EW) and polymers to enhance both the microscopic and macroscopic sweep efficiencies, which mainly results from: (1) the low-salinity effect and the presence of active ions in EW, which help in detachment of carboxylic oil material from the rock surface, wettability alteration, and reduction in the residual oil saturation; (2) the favorable mobility ratio resulting from the use of a polymer; and (3) the improved thermal and salinity resistance of polymers in EW. Various underlying mechanisms have been proposed in the literature for EW EOR effects in carbonates, but the main driving factors still need to be understood properly. Both polymer flooding (PF) and EW have associated merits and demerits. However, the demerits of each can be overcome by combining the two methods, known as hybrid EWPF. This hybrid technique has been experimentally investigated for both sandstone and carbonate reservoirs by various researchers. Most of the studies have shown the synergistic benefits of the hybrid method in terms of two- to four-fold decreases in the polymer adsorption, leading to 30–50% reductions in polymer consumption, making the project economically viable for carbonates. EWPF has resulted in 20–30% extra oil recovery in various carbonate coreflood experiments compared to high-salinity water flooding. This review presents insights into the use of hybrid EWPF for carbonates, the main recovery driving factors in the hybrid process, the advantages and limitations of this method, and some areas requiring further work.


2021 ◽  
Vol 6 (2) ◽  
pp. 1-5
Author(s):  
U. Hassan ◽  
M. B. Adamu ◽  
I. Bukar ◽  
M. A. Muhammad

The application of ultrasound energy in improving oil recovery is an emerging technique, it has been tested in laboratories and some field applications in different parts of the world. In this study, Nigerian crude oil of 4.21 cSt viscosity and sandstone rock samples were tested using a designed and constructed experimental rig. The rig is an analogue of a standard core flooding set up and works on the principle of fluid flow in porous media. Furthermore, a modeled equation was developed to better understand the effects of power and time on the volume of oil recovered at a constant ultrasound frequency.  Results obtained show a positive impact in the recovery of residual oil during waterflooding with the assisted ultrasound energy. About 2-fold increase in the recovery of oil was observed when the ultrasound energy was applied to augment the waterflooding process. Model equations developed were found to be adequate because the adjusted and predicted R-squared values show reasonable agreement (R-adjusted = 0.9993, R-Predicted = 0.9974). 


2020 ◽  
Vol 10 (6) ◽  
pp. 6652-6668

Historically, smart water flooding is proved as one of the methods used to enhance oil recovery from hydrocarbon reservoirs. This method has been spread due to its low cost and ease of operation, with changing the composition and concentration of salts in the water, the smart water injection leads to more excellent compatibility with rock and fluids. However, due to a large number of sandstone reservoirs in the world and the increase of the recovery factor using this high-efficiency method, a problem occurs with the continued injection of smart water into these reservoirs a phenomenon happened in which called rock leaching. Indeed, sand production is the most common problem in these fields. Rock wettability alteration toward water wetting is considered as the main cause of sand production during the smart water injection mechanism. During this process, due to stresses on the rock surface as well as disturbance of equilibrium, the sand production in the porous media takes place. In this paper, the effect of wettability alteration of oil wetted sandstones (0.005,0.01,0.02 and 0.03 molar stearic acid in normal heptane) on sand production in the presence of smart water is fully investigated. The implementation of an effective chemical method, which is nanoparticles, have been executed to prevent sand production. By stabilizing silica nanoparticles (SiO2) at an optimum concentration of 2000 ppm in smart water (pH=8) according to the results of Zeta potential and DLS test, the effect of wettability alteration of oil wetted sandstones on sand production in the presence of smart water with nanoparticles is thoroughly reviewed. Ultimately, a comparison of the results showed that nanoparticles significantly reduced sand production.


Author(s):  
Dhrubajyoti Neog

AbstractLow salinity water flooding (LSWF) is a promising strategy for improving oil recovery in sandstone reservoirs, and recent studies have shown that the recovery with low salinity water injection is a function of not only the salinity and ionic composition but also of the pH of injected brine, temperature, and the combined effect of both on the wetting properties of the clay mineral surfaces. Following brine flooding, the initial wettability of sandstone rock surfaces existed when crude oil, formation water (FW), and rock surface interaction were in chemical equilibrium at reservoir condition changes based on brine pH, salinity, temperature, and clay mineralogy. This study proposes pH, core flood temperature, and irreducible water saturation as key parameters in inducing wettability changes in the sandstone porous media. In the present work, the sandstone cores were subjected to flooding at temperatures of 70 °C, 85 °C, and 105 °C and measured the pH of the discharge effluents and initial or irreducible water saturation with respect to varying temperatures. This paper investigates the rise of the pH gradient and irreducible water saturation, Swir with respect to LS flooding, at increasing temperatures using a Barail sandstone core. The key results include the following: The pH of the flood effluents increases with increasing core flood temperature, which indicates a shifting of the existing wetting state of the rock. The combined effects of increasing pH and initial or irreducible water saturation pertaining to low salinity flooding at progressively increasing temperatures result in increasing water wettability of the sandstone rock. Increasing flooding temperatures cause an increase in Swir, which follows a linear relationship. The findings of the paper highlight the link of increasing pH and irreducible water saturation with the water wetting properties of the sandstone reservoir rock and hence the fluid flow or the oil–water relative permeability behaviour. This paper proposes that increased irreducible water saturation and pH of water flood effluents are connected to increasing water wetness in a sandstone rock as a function of elevated temperatures. As adequate work and consensus on the potential effects of temperature on wettability alteration under low salinity water flooding is still lacking, the current work in relation to the Barail sandstone of the upper Assam basin could be a novel reference for understanding of the importance of temperature dependent wettability alteration behaviour in sandstone cores. The findings of this study can assist in the formation of a novel approach towards considering the increasing irreducible water saturation and pH of the brine effluent as an effect of alternatively injection of low salinity water at elevated temperatures on sandstone porous rock.


2020 ◽  
Vol 17 (5) ◽  
pp. 1318-1328
Author(s):  
Sara Habibi ◽  
Arezou Jafari ◽  
Zahra Fakhroueian

Abstract Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and challenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO42− and Ca2+ ions in the presence of nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased efficiency of about 7.5%.


Sign in / Sign up

Export Citation Format

Share Document