irradiation channel
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Vol 2155 (1) ◽  
pp. 012021
Author(s):  
M T Aitkulov ◽  
D S Dyussambayev ◽  
N K Romanova ◽  
Sh H Gizatulin ◽  
A A Shaimerdenov ◽  
...  

Abstract One of the basic installations of the Republican State Enterprise “Institute of Nuclear Physics” of the Ministry of Energy of the Republic of Kazakhstan is a critical assembly, which is a zero-power reactor. Desalinated water and beryllium serve as moderators and neutrons reflectors. The energy spectrum of neutrons in the core is thermal. The main purpose and area of application is the modeling and study of the neutronic characteristics of the cores of water-moderated research reactors of various types. The paper presents the results of experimental measurements of the spatial-energy distribution of neutrons in the dry, central channel of the critical assembly. Measurements of the neutron flux were carried out using activation foils for three energy groups of neutrons: thermal, epithermal, and fast. The measured thermal neutrons flux in the irradiation channel is ~ 3·108 cm‒2s‒1, and fast neutrons flux (with energies above 0.7 MeV) is ~ 8·108 cm‒2s‒1. The fraction of thermal neutrons in the integral flux was 0.23%, and the fraction of fast neutrons was 0.62%. In the axial distribution of thermal and fast neutrons, the maximum value of the neutron flux is 50 mm below the midplane of the core.


Author(s):  
Radojko Jacimovic ◽  
Maria Angela de Barros Correia Menezes

Abstract The core configuration of the TRIGA MARK I IPR-R1 nuclear research reactor, Brazil, has been modified six times since the first criticality and the neutron fluxes have been determined using experimental and semi theoretical methodologies determining the neutron fluxes in different irradiation channels and devices, applying different procedures and materials. This reactor operates at 100 kW, however, after new configuration for 250 kW in 2001, the carousel no longer rotates during irradiations aiming at preserving the rotation mechanism. In 2003, the spectral parameters were determined experimentally by the "Cd-ratio for multi-monitor" in five specific channels aiming at the application of NAA k0-standardized method. The determinations were repeated applying the same procedure in 2016, 2018 and 2019. Values for thermal and epithermal neutron fluxes as well as f and a spectral parameters were determined. The experimental results for CRM BCR-320R were calculated by the k0-method of NAA, using the spectral parameters for irradiation channel IC-7 obtained in 2003, 2016, 2018 and 2019 and evaluated by En-score. The values showed that the differences in the results compared to those in 2003 were lower than 2.5%, inside the uncertainty of the method. It shows that the k0-method installed in CDTN is reliable and useful for various purposes. The results of the spectral parameter f presented small differences, in a period of 16 years, pointing out the stability of operation of the reactor TRIGA MARK I IPR-R1.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Larissa Rocha Pitta Xavier ◽  
Domingos D'Oliveira Cardoso ◽  
Francisco José De Oliveira Ferreira ◽  
Dante Luis Voi

Argonauta, the only nuclear research reactor situated in Rio de Janeiro, located at the Institute of Nuclear Engineering (IEN), regularly serves a network of users focused on research and development, and also provides its infrastructure for experimental classes and completion work course. Due to increasing demand for non-destructive thermal neutron assays and production of radioisotopes, there is a search for new procedures and/or devices that optimize users' exposure to neutrons. The implementation of mechanisms that allow access to the irradiation channels without the reactor being turned off and with a shielding configuration that limits the occupational doses at this location is very useful for the operation of the reactor. In order to achieve this, the present work proposes the establishment of a neutron beam shutter of the J-9 irradiation channel of the IEN’s Argonauta reactor. In a first step, experimental measurements were made in the irradiation channel of the reactor using a BF3 detector, which is coupled to a spectrometer. In this phase, the neutron beam was aligned to the spectrometer, and different materials were used as shields, aiming the attenuation of the beam. To validate and/or change the configuration of the barrier that best meets the material irradiation needs, a second planned phase is involving the neutron flux simulation of the reactor and the various shields with different boundary conditions using the particle transport code, Monte Carlo N-Particle Extended (MCNP- X).


2018 ◽  
Vol 170 ◽  
pp. 04009
Author(s):  
Benoit Geslot ◽  
Adrien Gruel ◽  
Stéphane Bréaud ◽  
Pierre Leconte ◽  
Patrick Blaise

Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.


2016 ◽  
Vol 4 ◽  
pp. 102
Author(s):  
Jan Šturma ◽  
Milan Štefánik

Vertical irradiation channel of the VR-1 training reactor of the Department of Nuclear Reactors CTU was used for activation analysis of historical samples from the 14th to the 19th century. For determination of mass fractions of materials such as copper, gold and silver in irradiated samples, the relative method of activation analysis was used. Further, a set of 24 activation detectors of 12 various materials served for the determination of neutron spectrum of the VR-1 reactor using analytical method; moreover the analytical solution was compared to unfolded spectrum obtained from SAND-II deconvolution program.


2015 ◽  
Vol 05 (03) ◽  
pp. 233-240
Author(s):  
F. T. Sheyin ◽  
M. O. A. Oladipo ◽  
S. A. Jonah ◽  
U. Sadiq
Keyword(s):  

2014 ◽  
Vol 04 (01) ◽  
pp. 21-25 ◽  
Author(s):  
Sunday Adesunloye Jonah ◽  
Raymond Limen Njinga ◽  
Yakubu Viva Ibrahim

Sign in / Sign up

Export Citation Format

Share Document