scholarly journals From Microenvironment Remediation to Novel Anti-Cancer Strategy: The Emergence of Zero Valent Iron Nanoparticles

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Ya-Na Wu ◽  
Li-Xing Yang ◽  
Pei-Wen Wang ◽  
Filip Braet ◽  
Dar-Bin Shieh

Accumulated studies indicate that zero-valent iron (ZVI) nanoparticles demonstrate endogenous cancer-selective cytotoxicity, without any external electric field, lights, or energy, while sparing healthy non-cancerous cells in vitro and in vivo. The anti-cancer activity of ZVI-based nanoparticles was anti-proportional to the oxidative status of the materials, which indicates that the elemental iron is crucial for the observed cancer selectivity. In this thematic article, distinctive endogenous anti-cancer mechanisms of ZVI-related nanomaterials at the cellular and molecular levels are reviewed, including the related gene modulating profile in vitro and in vivo. From a material science perspective, the underlying mechanisms are also analyzed. In summary, ZVI-based nanomaterials demonstrated prominent potential in precision medicine to modulate both programmed cell death of cancer cells, as well as the tumor microenvironment. We believe that this will inspire advanced anti-cancer therapy in the future.

2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1550 ◽  
Author(s):  
Tomomi Sanomachi ◽  
Shuhei Suzuki ◽  
Keita Togashi ◽  
Asuka Sugai ◽  
Shizuka Seino ◽  
...  

Spironolactone, a classical diuretic drug, is used to treat tumor-associated complications in cancer patients. Spironolactone was recently reported to exert anti-cancer effects by suppressing DNA damage repair. However, it currently remains unclear whether spironolactone exerts combinational effects with non-DNA-damaging anti-cancer drugs, such as gemcitabine and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Using the cancer cells of lung cancer, pancreatic cancer, and glioblastoma, the combinational effects of spironolactone with gemcitabine and osimertinib, a third-generation EGFR-TKI, were examined in vitro with cell viability assays. To elucidate the underlying mechanisms, we investigated alterations induced in survivin, an anti-apoptotic protein, by spironolactone as well as the chemosensitization effects of the suppression of survivin by YM155, an inhibitor of survivin, and siRNA. We also examined the combinational effects in a mouse xenograft model. The results obtained revealed that spironolactone augmented cell death and the suppression of cell growth by gemcitabine and osimertinib. Spironolactone also reduced the expression of survivin in these cells, and the pharmacological and genetic suppression of survivin sensitized cells to gemcitabine and osimertinib. This combination also significantly suppressed tumor growth without apparent adverse effects in vivo. In conclusion, spironolactone is a safe candidate drug that exerts anti-cancer effects in combination with non-DNA-damaging drugs, such as gemcitabine and osimertinib, most likely through the suppression of survivin.


2019 ◽  
Vol 20 (17) ◽  
pp. 4238 ◽  
Author(s):  
Yaqi Ren ◽  
Chunlan Wang ◽  
Jiakun Xu ◽  
Shuaiyu Wang

Cafestol and kahweol are natural diterpenes extracted from coffee beans. In addition to the effect of raising serum lipid, in vitro and in vivo experimental results have revealed that the two diterpenes demonstrate multiple potential pharmacological actions such as anti-inflammation, hepatoprotective, anti-cancer, anti-diabetic, and anti-osteoclastogenesis activities. The most relevant mechanisms involved are down-regulating inflammation mediators, increasing glutathione (GSH), inducing apoptosis of tumor cells and anti-angiogenesis. Cafestol and kahweol show similar biological activities but not exactly the same, which might due to the presence of one conjugated double bond on the furan ring of the latter. This review aims to summarize the pharmacological properties and the underlying mechanisms of cafestol-type diterpenoids, which show their potential as functional food and multi-target alternative medicine.


2020 ◽  
Vol 8 (18) ◽  
pp. 4122-4131 ◽  
Author(s):  
Li-Xing Yang ◽  
Ya-Na Wu ◽  
Pei-Wen Wang ◽  
Kuang-Jing Huang ◽  
Wu-Chou Su ◽  
...  

A schematic illustration of the possible mechanisms governing the selective anticancer efficacy of ZVI NPs.


Author(s):  
Girum Tefera Belachew ◽  
Bitaniya Abera Tekelemariam ◽  
Paramesh Hanumanthaiah ◽  
Fekede Meshesha Namo

Utilization of crude extracts separated from herbal medicine is getting more worthy and ideal, conceivably because of the expense of production, accessibility and availability to bring down harmful effects as much as possible. Various researches have shown that the regular use of particular soil products like fruits and vegetables can minimize the risk of a number of infections. Ginger is among the most commonly and regularly devoured dietary sauces on the planet. One of the major impactful components of ginger, 6-gingerol is suggested for the avoidance of malignancy and different maladies. As a spice and home grown medicine, the rhizome of Zingiber officinale (ginger) is devoured worldwide and it contains sharp phenolic compounds known as gingerols aggregately. The main pharmacologically-dynamic segment of ginger is 6-Gingerol. It is recognized to show a variety of organic actions including anti-cancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to have anticancer effects by means of its impact on an assortment of natural pathways associated with apoptosis, control of cell cycle, cytotoxic action and restraint of angiogenesis. Consequently, because of its adequacy and control of different targets, just as its security for human use, 6-gingerol has gained impressive enthusiasm as an expected helpful operator for the anticipation and additionally treatment for different maladies. Taken together, this review sums up the different in vitro and in vivo pharmacological aspects of 6-gingerol and their underlying mechanisms.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5424
Author(s):  
Ewelina Piktel ◽  
Ilona Oscilowska ◽  
Łukasz Suprewicz ◽  
Joanna Depciuch ◽  
Natalia Marcińczyk ◽  
...  

Gold nanoparticles-assisted delivery of antineoplastics into cancerous cells is presented as an effective approach for overcoming the limitations of systemic chemotherapy. Although ceragenins show great potential as anti-cancer agents, in some tumors, effective inhibition of cancer cells proliferation requires application of ceragenins at doses within their hemolytic range. For the purpose of toxicity/efficiency ratio control, peanut-shaped gold nanoparticles (AuP NPs) were functionalized with a shell of ceragenin CSA-131 and the cytotoxicity of AuP@CSA-131 against ovarian cancer SKOV-3 cells and were then analyzed. In vivo efficiency of intravenously and intratumorally administered CSA-131 and AuP@CSA-131 was examined using a xenograft ovarian cancer model. Serum parameters were estimated using ELISA methods. Comparative analysis revealed that AuP@CSA-131 exerted stronger anti-cancer effects than free ceragenin, which was determined by enhanced ability to induce caspase-dependent apoptosis and autophagy processes via reactive oxygen species (ROS)-mediated pathways. In an animal study, AuP@CSA-131 was characterized by delayed clearance and prolonged blood circulation when compared with free ceragenin, as well as enhanced anti-tumor efficiency, particularly when applied intratumorally. Administration of CSA-131 and AuP@CSA-131 prevented the inflammatory response associated with cancer development. These results present the possibility of employing non-spherical gold nanoparticles as an effective nanoplatform for the delivery of antineoplastics for the treatment of ovarian malignancy.


2020 ◽  
Author(s):  
Bing Wei ◽  
Shangli Yao ◽  
Ming Gao ◽  
Zujun Wang ◽  
Wenyan Wang ◽  
...  

Abstract Resveratrol (RES), a natural compound found in red wine, has previously reported to suppress ovarian cancer (OC) cell growth in vitro and in vivo; however, its potential molecular mechanisms are not fully elucidated. The aim of this study is to investigate the suppressive potential of RES in OC cell growth and invasion and reveal the underlying mechanisms. Herein, we found that RES treatment obviously suppressed the proliferative and invasive capacities of OC cells, and elevated cell apoptosis in vitro. Subsequent microarray and qRT-PCR analysis further showed that microRNA-34a (miR-34a) was significantly increased by RES treatment. Moreover, the inhibitory effects of RES on OC cells were enhanced by miR-34a overexpression, whereas weakened by miR-34a inhibition in OC cells. Of note, Bcl-2, an anti-apoptotic gene, was identified as a direct target of miR-34a. Then, we revealed that RES decreased the expression of Bcl-2 in OC cells in a dose dependent manner. Furthermore, the anti-tumor effects of RES were abolished by overexpression of Bcl-2 in OC cells. Overall, these results demonstrated that RES exerts the anti-cancer effects on OC cells through the miR-34a/Bcl-2 axis.


Author(s):  
Hitesh Jagani ◽  
Josyula Rao ◽  
Vasanth Palanimuthu ◽  
Raghu Hariharapura ◽  
Sagar Gang

AbstractOverexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 358 ◽  
Author(s):  
Minjing Li ◽  
Jinliang Chen ◽  
Xiaofei Yu ◽  
Sen Xu ◽  
Defang Li ◽  
...  

Myricetin is a naturally occurring flavonoid with protective effects against a variety of cancers. However, the molecular mechanism of myricetin against hepatocellular carcinoma (HCC) has still not been fully elucidated. Previous studies have indicated that YAP is essential for cancer initiation and progression. However, whether YAP contributes to the anti-cancer effects of myricetin remains unclear. Herein, we aimed to investigate the effect of myricetin on HCC, and identify the underlying mechanisms. We report that myricetin induced apoptosis and proliferation inhibition in HepG2 and Huh-7 cells. Myricetin inhibited expression of YAP by promoting its phosphorylation and subsequent degradation. Myricetin inhibited YAP expression by stimulating kinase activation of LATS1/2. Knockdown expression of LATS1/2 by shRNA attenuated myricetin-induced phosphorylation and degradation of YAP. Furthermore, myricetin sensitized HCC cells to cisplatin treatment through inhibiting YAP and its target genes, both in vitro and in vivo. The identification of the LATS1/2-YAP pathway as a target of myricetin may help with the design of novel strategies for human HCC prevention and therapy.


2020 ◽  
Vol 21 ◽  
Author(s):  
Muhammad Ajmal Shah ◽  
Muhammad Adnan ◽  
Azhar Rasul ◽  
Ghulam Hussain ◽  
Iqra Sarfraz ◽  
...  

: Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anti-cancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anti-cancer activities of physcion and PG along with asso-ciated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling path-ways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as inhibitor of 6PGD and also play an important role in chemosensitization. This review article suggests that physcion and PG are potent anti-cancer drug candidates but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anti-cancer remedies.


Sign in / Sign up

Export Citation Format

Share Document