Property Evolution and Reliability of Underfills Under Sustained High Temperature Storage

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Madhu Kasturi ◽  
Haotian Wu ◽  
Jeff Suhling ◽  
Edward Davis

Abstract Automotive underhood electronics may be exposed to high temperature in the neighborhood of 100°C–200°C. Property evolution may impact reliability and accuracy of predictive models to assure desired use life. In this paper, evolution of properties of two underfill material properties are studied using DMA (Dynamic Mechanical Analyzer). The underfills are exposed to three different operational temperatures in the range of 100°C to 140°C for the measurements. The dynamic mechanical properties such as storage modulus (E′), loss modulus (E″), tangent delta (tan δ), and respective glass transition temperatures (Tg) are studied using DMA. Study of viscoelastic behavior of underfills is achieved by performing TTS (time-temperature superposition) experiments at 7 discrete frequencies 0.1, 0.21, 0.46, 1, 2.15, 4.64, and 10 Hz using DMA in three-point bend mode. From the selected reference temperatures, the master curves were constructed for storage moduli, loss moduli and tan delta as a function of frequency using TTS results. Using the WLF (Williams-Landel-Ferry) equation, the shift factors as a function of temperature were determined along the frequency axis. The relaxation modulus as a function of temperature and time can be obtained using the master curves of storage and loss moduli. A simple and detailed procedure has been established to find the Prony series constants.

1987 ◽  
Vol 60 (4) ◽  
pp. 591-599 ◽  
Author(s):  
S. Akhtar ◽  
S. S. Bhagawan

Abstract Dynamic mechanical properties such as storage modulus, loss modulus, and loss tangent have been evaluated over a wide range of temperatures for thermoplastic elastomers prepared from blends of NR and HDPE. It was observed that above room temperature, both storage and loss moduli increased and loss tangent decreased as the HDPE content in the blend increased. The effects of dynamic crosslinking and carbon black filler on dynamic mechanical behavior of 70/30 NR/HDPE blend were also examined. Carbon black increased the storage and loss moduli but lowered and broadened the tan δ peak. On the other hand, crosslinking increased storage modulus and decreased the loss modulus and loss tangent, particularly after the NR Tg. The tan δ peak area which appeared at Tg for NR was proportional to the rubber content in the blends.


2014 ◽  
Vol 684 ◽  
pp. 111-116
Author(s):  
Yan Bin Gao ◽  
Xiong Chen ◽  
Jin Sheng Xu ◽  
Shao Qing Hu

In this paper, the static and dynamic mechanical viscoelastic behavior of NEPE propellant are studied. Under static conditions, five samples were subjected to constant-strain-rate monotonic loading with five different loading rates at room temperature. The dynamic mechanical analysis was employed for measurements of temperature and frequency dependence of the NEPE propellant by mean of BOSE-DMA-ELF3200 in frequency range from 1Hz to 16Hz. And get the dynamic mechanics temperature spectrum In the low temperature region, a single relaxation is observed in loss modulus-temperature Curves, which is glass transition relaxation. The results showed that NEPE propellant showed rate dependence and the same mechanical properties in the lower temperature and higher frequency.


2012 ◽  
Vol 85 (4) ◽  
pp. 513-525 ◽  
Author(s):  
S. Maghami ◽  
W. K. Dierkes ◽  
T. V. Tolpekina ◽  
S. M. Schultz ◽  
J. W. M. Noordermeer

ABSTRACT One of the important aspects in the development of new tire compounds is the correlation between the dynamic mechanical properties of the rubber, measured on a laboratory scale, and the actual tire performance. The measuring protocol for dynamic mechanical properties with high precision and good correlation with tire properties is therefore of main concern. To predict wet traction, the viscoelastic behavior of the rubber materials at high frequencies (in the MHz range) need to be known. Viscoelastic master curves derived from time-temperature superposition can be used to describe the properties of the materials over a wide frequency range. The construction of master curves for tread compounds filled with different amounts of silica is discussed. From the vertical shifts as a function of temperature, activation energies are derived that apparently are in the linear response region by fulfilling the Kramers-Kronig relations, and their values correspond to physical phenomena as the underlying principle. Strain sweep viscoelastic measurements, per definition outside the linear region, lead to much higher activation energies. Because the deformation strains employed for these strain sweep measurements are more realistic for wet traction or skidding phenomena, it is concluded that the value of the above measurements in the linear region to predict traction is only limited or a first but still important indication.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 700
Author(s):  
Muhamad Hasfanizam Mat Yazik ◽  
Mohamed Thariq Hameed Sultan ◽  
Mohammad Jawaid ◽  
Abd Rahim Abu Talib ◽  
Norkhairunnisa Mazlan ◽  
...  

The aim of the present study has been to evaluate the effect of hybridization of montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNT) on the thermal and viscoelastic properties of shape memory epoxy polymer (SMEP) nanocomposites. In this study, ultra-sonication was utilized to disperse 1%, 3%, and 5% MMT in combination with 0.5%, 1%, and 1.5% MWCNT into the epoxy system. The fabricated SMEP hybrid nanocomposites were characterized via differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The storage modulus (E’), loss modulus (E”), tan δ, decomposition temperature, and decomposition rate, varied upon the addition of the fillers. Tan δ indicated a reduction of glass transition temperature (Tg) for all the hybrid SMEP nanocomposites. 3% MMT/1% MWCNT displayed best overall performance compared to other hybrid filler concentrations and indicated a better mechanical property compared to neat SMEP. These findings open a way to develop novel high-performance composites for various potential applications, such as morphing structures and actuators, as well as biomedical devices.


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 403 ◽  
Author(s):  
Yongqiang Du ◽  
Jian Zheng ◽  
Guibo Yu

Hydroxyl terminated polybutadiene (HTPB) coating is widely used in a solid rocket motor, but an aging phenomenon exists during long-term storage, which causes irreversible damage to the performance of this HTPB coating. In order to study the effect of aging on the dynamic mechanical properties of the HTPB coating, the thermally-accelerated aging test was carried out. The variation of maximum elongation and crosslinking density with aging time was obtained, and a good linear relationship between maximum elongation and crosslinking density was found by correlation analysis. The changing regularity of dynamic mechanical properties with aging time was analyzed. It was found that with the increase of aging time, Tg of HTPB coating increased, Tα, tan β and tan α decreased, and the functional relationships between the loss factor parameters and crosslinking density were constructed. The storage modulus and loss modulus of HTPB coating increased with the increase of aging time, and decreased with the increase of pre-strain. The aging enhanced the Payne effect of HTPB coating, while the pre-strain had a weakening effect. In view of the Payne effect of HTPB coating, the crosslinking density was introduced into Kraus model as aging evaluation parameter, and the crosslinking density modified models with and without pre-strain were established. The proposed models can effectively solve the problem that the Kraus model has a poor fitting effect under the condition of small strain (generally less than 1%) and on the loss modulus, which have improved the correlations between the fitting results and the test results.


2014 ◽  
Vol 699 ◽  
pp. 239-244 ◽  
Author(s):  
Nurhidayah R. Zamani ◽  
Aidah Jumahat ◽  
Rosnadiah Bahsan

In this study, Dynamic Mechanical Analyzer (DMA) was used to study the effect of nanoparticles, which is nanosilica, on glass transition temperature (Tg) of epoxy polymer. A series of epoxy based nanosilica composite with 5-25 wt% nanosilica content was prepared using mechanical stirring method. The weight fractions of nanosilica in epoxy were 5 wt%, 13 wt% and 25 wt%. 30mm x 10mm x 3mm size specimens were tested using DMA machine from room temperature up to 180oC at 2°C/min heating rate. From the analysis of the results, dynamic modulus and glass transition temperature of pure polymer and nanosilica filled polymer were obtained. The glass transition of a polymer composite is a temperature-induced change in the matrix material from the glassy to the rubbery state during heating or cooling. Glass transition temperature Tg was determined using several method: storage modulus onset, loss modulus peak, and tan δ peak. The results showed that the presence of nanosilica reduced Tg of epoxy polymer.


2018 ◽  
Vol 157 ◽  
pp. 07009 ◽  
Author(s):  
Mariana Pajtášová ◽  
Zuzana Mičicová ◽  
Darina Ondrušová ◽  
Slavomíra Božeková ◽  
Róbert Janík ◽  
...  

The presented paper deals with the use of waste materials as ecological fillers into rubber matrix. Waste materials were used as partial replacement of the commercial filler – carbon black, designated as N339. These prepared rubber compounds were characterized on the basis of the rheology and vulcanization characteristics – minimum torque (ML), maximum torque (MH), optimum time of vulcanization (t(c90)), processing safety of compound (ts), rate coefficient of vulcanization (Rv). In the case of the prepared vulcanizates, physical-mechanical properties (tensile strength, tensibility and hardness) and dynamic-mechanical properties (storage modulus, loss modulus, loss angle tan δ) were investigated. Using the dependency of loss angle on temperature, the selected properties for tyre tread vulcanizates were evaluated, including traction on snow and ice, traction on the wet surface and rolling resistance.


2019 ◽  
Vol 39 (6) ◽  
pp. 508-514
Author(s):  
Yannan He ◽  
Zhiqiang Yu

Abstract The thermal and dynamic mechanical properties of epoxy composites filled with zirconium diboride/nano-alumina (ZrB2/Al2O3) multiphase particles were investigated by means of differential scanning calorimetry, dynamic thermo-mechanical analysis, and numerical simulation. ZrB2/Al2O3 particles were surface organic functional modified by γ-glycidoxypropyltrimethoxysilane for the improvement of their dispersity in epoxy matrix. The results indicated that the curing exotherm of epoxy resin decreased significantly due to the addition of ZrB2/Al2O3 multiphase particles. In comparison to the composites filled with unmodified particles, the modified multiphase particles made the corresponding filling composites exhibit lower curing reaction heat, lower loss modulus, and higher storage modulus. Generally speaking, the composites filled with 5 wt% modified multiphase particles presented the best thermal stability and thermo-mechanical properties due to the better filler-matrix interfacial compatibility and the uniform dispersity of modified particles. Finite element analysis also suggested that the introduction of modified ZrB2/Al2O3 multiphase particles increased the stiffness of the corresponding composites.


Sign in / Sign up

Export Citation Format

Share Document