scholarly journals Tribological wear of Fe-Al coatings applied by gas detonation spraying

2021 ◽  
Author(s):  
Tomasz Chrostek

Comparative tests of gas detonation (GDS) coatings were carried out in order to investigate the influence of spraying parameters on abrasive wear under dry friction conditions. The tests were carried out using the pin-on-disc (PoD) method at room temperature. The microstructure of the coatings was analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM / EDS) methods. The results showed that with specific GDS process parameters, the main phases in both coatings were FeAl and Fe3Al involving thin oxide films Al2O3. The tribological tests proved that the coatings sprayed with the shorter barrel of the GDS gun showed higher wear resistance. The coefficient of friction was slightly lower in the case of coatings sprayed with the longer barrel of the GDS gun. During dry friction, oxide layers form on the surface, which act as a solid lubricant. The load applied to the samples during the tests causes shear stresses, thus increasing the wear of the coatings. During friction, the surface of the coatings is subjected to alternating tensile and compressive stresses, which lead to delamination and is the main wear mechanism of the coatings.

Author(s):  
Bin Lin ◽  
Hongbo Zou ◽  
Yaqi Meng ◽  
Tianyi Sui ◽  
Shuai Yan

Abstract The tribology performance of two carbon fibre-reinforced polyether-ether-ketones (450FC30 and WG101) sliding against stainless steel 3Cr13 and 3Cr13 coated with aluminium oxide (Al2O3), tungsten carbide (WC) and diamond-like carbon (DLC) under dry friction and water lubrication were studied to reduce the coefficient of friction and improve the wear resistance of water-lubricated bearings. The friction and wear mechanism of different tribopairs were determined via pin-on-disc sliding tests. Experimental results showed that the WG101/Al2O3 tribopair exhibited excellent wear resistance under dry friction and water lubrication. Carbon fibres were exposed on the friction surface of WG101 when WG101 slid against Al2O3. These carbon fibres bore most of the load to reduce wear. This work provides a practical basis for selecting the optimal tribopair for water-lubricated bearings.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 793
Author(s):  
Nurgamit Kantay ◽  
Bauyrzhan Rakhadilov ◽  
Sherzod Kurbanbekov ◽  
Didar Yeskermessov ◽  
Gulnara Yerbolatova ◽  
...  

Al2O3 coatings were applied on the surface of 12Ch18N10T steel by the detonation method at different degrees of filling of the detonation gun. The aim was to study the influence of technological parameters on the formation of the coating’s structure, phase composition and tribological characteristics. The degree of filling the gun with a gas mixture (C2H2/O2) varied from 53% to 68%. X-ray diffraction study showed that the content of α-Al2O3 increases depending on the degree of filling. The results showed that the hardness increases with an increase in the α-Al2O3 phase. When the gun is 53% filled with gas, the Al2O3-based coating has the hardness of 20.56 GPa compared to 58%, 63% and 68% fillings. Tribology tests have shown that the wear rate and friction coefficient of the coating is highly dependent on the degree of filling of the gun.


2018 ◽  
Vol 62 (1) ◽  
pp. 6-13 ◽  
Author(s):  
S. Panin ◽  
I. Vlasov ◽  
D. Dudina ◽  
V. Ulyanitsky ◽  
R. Stankevich ◽  
...  

Abstract The structure and mechanical properties of the coatings formed by reactive detonation spraying of titanium in a wide range of spraying conditions were studied. The variable deposition parameters were the nature of the carrier gas, the spraying distance, the O2/C2H2 ratio, and the volume of the explosive mixture. The phase composition of the coatings and the influence of the spraying parameters on the mechanical properties of the coatings were investigated. In addition, nanohardness of the individual phases contained the coatings was evaluated. It was found that the composition of the strengthening phases in the coatings depends on the O2/C2H2 ratio and the nature of the carrier gas. Detonation spraying conditions ensuring the formation of composite coatings with a set of improved mechanical properties are discussed.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 36
Author(s):  
Matúš Ranuša ◽  
Markus A. Wimmer ◽  
Spencer Fullam ◽  
Martin Vrbka ◽  
Ivan Křupka

Total knee arthroplasty is on the rise worldwide. Despite its success, revision surgeries are also increasing. According to the American Joint Replacement Registry 2020, 3.3% of revision surgeries are due to wear, and 24.2% are due to mechanical loosening. The combination of shear stresses and wear particles occurring at the bone/implant interface can lead to local osteolysis. Although the shear stresses are partially driven by joint friction, relatively little is known about the evolution of the coefficient of friction (CoF) during a gait cycle in total knee replacement. Here we describe the CoF during a gait cycle and investigate its association with kinematics (slide–roll-ratio), applied load, and relative velocity. The artificial knee was simulated by cobalt–chromium condyle on a flat ultra-high-molecular-weight polyethylene (UHMWPE) tibial plateau, lubricated by either water or proteinaceous solution. We found that the CoF is not a constant but fluctuates between the values close to 0 and 0.15. Cross-correlation suggested that this is primarily an effect of the slide–roll ratio and the contact pressure. There was no difference in the CoF between water and proteinaceous solution. Knowledge about the CoF behavior during a gait cycle will help to increase the accuracy of future computational models of total knee replacement.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


2016 ◽  
Vol 41 (5) ◽  
pp. E149-E158 ◽  
Author(s):  
VF Wandscher ◽  
CD Bergoli ◽  
IF Limberger ◽  
TP Cenci ◽  
P Baldissara ◽  
...  

SUMMARY Objective: This article aims to present a fractographic analysis of an anterior tooth restored with a glass fiber post with parallel fiber arrangement, taking into account force vectors, finite element analysis, and scanning electron microscopy (SEM). Methods: A patient presented at the Faculty of Dentistry (Federal University of Santa Maria, Brazil) with an endodontically treated tooth (ETT), a lateral incisor that had a restorable fracture. The treatment was performed, and the fractured piece was analyzed using stereomicroscopy, SEM, and finite element analysis. Results: The absence of remaining coronal tooth structure might have been the main factor for the clinical failure. We observed different stresses actuating in an ETT restored with a fiber post as well as their relationship with the ultimate fracture. Tensile, compression, and shear stresses presented at different levels inside the restored tooth. Tensile and compressive stresses acted together and were at a maximum in the outer portions and a minimum in the inner portions. In contrast, shear stresses acted concomitantly with tensile and compressive stresses. Shear was higher in the inner portions (center of the post), and lower in the outer portions. This was confirmed by finite element analysis. The SEM analysis showed tensile and compression areas in the fiber post (exposed fibers=tensile areas=lingual surface; nonexposed fibers=compression areas=buccal surface) and shear areas inside the post (scallops and hackle lines). Stereomicroscopic analysis showed brown stains in the crown/root interface, indicating the presence of microleakage (tensile area=lingual surface). Conclusion: We concluded that glass fiber posts with parallel fibers (0°), when restoring anterior teeth, present a greater fracture potential by shear stress because parallel fibers are not mechanically resistant to support oblique occlusal loads. Factors such as the presence of remaining coronal tooth structure and occlusal stability assist in the biomechanical equilibrium of stresses that act upon anterior teeth.


2017 ◽  
Vol 867 ◽  
pp. 19-28 ◽  
Author(s):  
J. Lakshmipathy ◽  
Subburaj Rajesh Kannan ◽  
K. Manisekar ◽  
S. Vinoth Kumar

In this article, an attempt was made to study the mechanical behaviour of AA7068 - 6 vol. % of MoS2 - X vol. % of WC (X = 0, 5, 10 and 15) hybrid aluminium composites produced by blend–press–sinter methodology. Compacted Powders (700MPa) were sintered at different temperatures (450 0c, 500 0c and 550 0c ) in order to find the influence of sintering temperature on mechanical properties and tribological behavior of AA7068 hybrid composites.The sintered samples have been characterized by x-ray diffraction (XRD) method for identification of phases and also to investigate the phase changes. The change in density, hardness and porosity values of composites were reported. The composite with 15 vol. % of tungsten carbide and 6 vol. % of MoS2 showed the highest hardness and density at the sintering temperature range of 550 0c. Pin-on-disc type apparatus was used for determining the wear loss occurring at different conditions. The hybridization of the two reinforcements enhanced the wear resistance of the composites, especially under high applied load, sliding distance and sliding speeds. Due to this, the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors. The morphology of the wear debris and the worn out surfaces were analyzed to understand the wear mechanisms.


Electroless nickel-boron binary coatings were obtained with various bath compositions to investigate the effect of bath parameters on tribological and mechanical behaviours of the coating. Characterisation of the coating for surface morphology and phase structure is done using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD), respectively, whereas tribological behaviour of coatings is evaluated on a pin-on-disc tribo-tester. Elastic modulus and surface hardness of coatings have been obtained using nano-indentation technique, while the scratch behaviour of the coatings has been determined using micro-scratch test. Corrosion resistance of coatings is also determined. It is observed that surface roughness of the coatings increased with increase in sodium borohydride concentration but decreased slightly with increase in nickel chloride concentration. Friction and wear characteristics are found to increase with surface roughness which occurs due to increased boron content. Surface hardness and scratch hardness are also seen to vary with coating bath parameters.


2007 ◽  
Vol 14 (05) ◽  
pp. 1007-1013 ◽  
Author(s):  
ESAH HAMZAH ◽  
ALI OURDJINI ◽  
MUBARAK ALI ◽  
PARVEZ AKHTER ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
...  

In the present study, the effect of various N 2 gas flow rates on friction coefficient and surface roughness of TiN -coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N 2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N 2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N 2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.


Sign in / Sign up

Export Citation Format

Share Document