On the use of nonlinear impact oscillators in vibrating electromagnetic based energy harvesters

Author(s):  
Hassen M. Ouakad ◽  
Majid Al-Harthi ◽  
Issam B. Bahadur

This work investigates the use of impact-oscillators in nonlinear electro-magnetic cantilever based broad bandwidth frequency energy harvester. The electro-mechanical model includes the dynamical equations of the nonlinear impact-oscillators, the nonlinear frequency resonant cantilever beam equation of the harvester, and the Lorenz magnetic force resulting from the surrounding nonlinear magnetic field. The simulated results of the harvested power show a band of resonant frequencies of the vibrating cantilever beam extended beyond its fundamental natural frequency. Due to the strong nonlinearity of both the impact oscillators’ forces and the magnetic flux, the harvested power of the enhanced system shows wider bands in its respective frequency response. Moreover, the harvested power of the cantilever beam shows that considering two magnets in repulsion generates higher values mainly due to the strong nonlinear transient magnetic flux, resulting into few times more power as compared to the case of considering only one magnet in the system.

2020 ◽  
Vol 2020 (10) ◽  
pp. 4-11
Author(s):  
Victor Tikhomirov ◽  
Aleksandr Gorlenko ◽  
Stanislav Volohov ◽  
Mikhail Izmerov

The work purpose is the investigation of magnetic field impact upon properties of friction steel surfaces at fit stripping with tightness through manifested effects and their wear visually observed. On the spots of a real contact the magnetic field increases active centers, their amount and saturation with the time of dislocation outlet, and has an influence upon tribo-mating. The external electro-magnetic field promotes the increase of the number of active centers at the expense of dislocations outlet on the contact surface, and the increase of a physical contact area results in friction tie strengthening and growth of a friction factor. By the example of friction pairs of a spentonly unit in the suspension of coach cars there is given a substantiation of actuality and possibility for the creation of technical devices with the controlled factor of friction and the stability of effects achieved is also confirmed experimentally. Investigation methods: the fulfillment of laboratory physical experiments on the laboratory plant developed and patented on bush-rod samples inserted with the fit and tightness. The results of investigations and novelty: the impact of the magnetic field upon the value of a stripping force of a press fit with the guaranteed tightness is defined. Conclusion: there is a possibility to control a friction factor through the magnetic field impact upon a friction contact.


2014 ◽  
Vol 14 (08) ◽  
pp. 1440021
Author(s):  
Xiaoling Bai ◽  
Yumei Wen ◽  
Ping Li ◽  
Jin Yang ◽  
Xiao Peng ◽  
...  

Cantilever beams have found intensive and extensive uses as underlying mechanisms for energy transduction in sensors as well as in energy harvesters. In magnetoelectric (ME) transduction, the underlying cantilever beam usually will undergo magnetic coupling effect. As the beam itself is either banded with magnetic transducer or magnets, the dynamic motion of the cantilever can be modified due to the magnetic force between the magnets and ME sensors. In this study, the dynamic response of a typical spiral cantilever beam with magnetic coupling is investigated. The spiral cantilever acts as the resonator of an energy harvester with a tip mass in the form of magnets, and a ME transducer is positioned in the air gap and interacts with the magnets. It is expected that this spiral configuration is capable of performing multiple vibration modes over a small frequency range and the response frequencies can be magnetically tunable. The experimental results show that the magnetic coupling between the magnets and the transducer plays a favorable role in achieving tunable resonant frequencies and reducing the frequency spacings. This will benefits the expansion of the response band of a device and is especially useful in energy harvesting.


Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighbourhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally and the real value of the restitution coefficient is determined by this method.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


2020 ◽  
Vol 641 ◽  
pp. A133
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
J. Jacquemin-Ide

Context. Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) show eruptions that are thought to be due to a thermal-viscous instability in their accretion disk. These eruptions provide constraints on angular momentum transport mechanisms. Aims. We explore the idea that angular momentum transport could be controlled by the dynamical evolution of the large-scale magnetic field. We study the impact of different prescriptions for the magnetic field evolution on the dynamics of the disk. This is a first step in confronting the theory of magnetic field transport with observations. Methods. We developed a version of the disk instability model that evolves the density, the temperature, and the large-scale vertical magnetic flux simultaneously. We took into account the accretion driven by turbulence or by a magnetized outflow with prescriptions taken, respectively, from shearing box simulations or self-similar solutions of magnetized outflows. To evolve the magnetic flux, we used a toy model with physically motivated prescriptions that depend mainly on the local magnetization β, where β is the ratio of thermal pressure to magnetic pressure. Results. We find that allowing magnetic flux to be advected inwards provides the best agreement with DNe light curves. This leads to a hybrid configuration with an inner magnetized disk, driven by angular momentum losses to an MHD outflow, sharply transiting to an outer weakly-magnetized turbulent disk where the eruptions are triggered. The dynamical impact is equivalent to truncating a viscous disk so that it does not extend down to the compact object, with the truncation radius dependent on the magnetic flux and evolving as Ṁ−2/3. Conclusions. Models of DNe and LMXB light curves typically require the outer, viscous disk to be truncated in order to match the observations. There is no generic explanation for this truncation. We propose that it is a natural outcome of the presence of large-scale magnetic fields in both DNe and LMXBs, with the magnetic flux accumulating towards the center to produce a magnetized disk with a fast accretion timescale.


2018 ◽  
Vol 67 (3) ◽  
pp. 71-81
Author(s):  
Krzysztof Just ◽  
Paweł Piskur

In this paper, the static characteristics as a function of changes in geometric dimensions of the stator magnetic circuit of the linear stepper actuator with permanent magnets is presented. The stator is built from a series of cylindrical coils encapsulated with ferromagnetic case. The runner is made of permanent magnet rings connected with ferromagnetic spacers. The electromagnetic interac-tion between the stator and the runner for the sequential supply of coils was analyzed. The electro-magnetic force as a function of the geometry of the coils and the ferromagnetic housing for the con-stant graduation of the runner was determined. The maximum, minimum, and average values of the electromagnetic force as a function of the geometric independent variable were determined. The ratio of the mean force to the maximum, and mechanical work calculated as the integral of the force on the path of the runner was adopted as the evaluation criteria. A comparison between the maximum, average and relative values of forces as a function of the geometric dimensions of the stator was made. Keywords: modelling and simulation, linear actuator, finite element method, field calculations, cogging force, magnetic force.


2020 ◽  
Vol 10 ◽  
pp. 62
Author(s):  
Melinda Nagy ◽  
Alexandre Lemerle ◽  
Paul Charbonneau

We examine the impact of surface inflows into activity belts on the operation of solar cycle models based on the Babcock–Leighton mechanism of poloidal field regeneration. Towards this end we introduce in the solar cycle model of Lemerle & Charbonneau (2017. ApJ 834: 133) a magnetic flux-dependent variation of the surface meridional flow based on the axisymmetric inflow parameterization developped by Jiang et al. (2010. ApJ 717: 597). The inflow dependence on emerging magnetic flux thus introduces a bona fide nonlinear backreaction mechanism in the dynamo loop. For solar-like inflow speeds, our simulation results indicate a decrease of 10–20% in the strength of the global dipole building up at the end of an activity cycle, in agreement with earlier simulations based on linear surface flux transport models. Our simulations also indicate a significant stabilizing effect on cycle characteristics, in that individual cycle amplitudes in simulations including inflows show less scatter about their mean than in the absence of inflows. Our simulations also demonstrate an enhancement of cross-hemispheric coupling, leading to a significant decrease in hemispheric cycle amplitude asymmetries and temporal lag in hemispheric cycle onset. Analysis of temporally extended simulations also indicate that the presence of inflows increases the probability of cycle shutdown following an unfavorable sequence of emergence events. This results ultimately from the lower threshold nonlinearity built into our solar cycle model, and presumably operating in the sun as well.


1970 ◽  
Vol 110 (4) ◽  
pp. 25-29 ◽  
Author(s):  
C. Akuner ◽  
E. Huner

In this study, the axial flux permanent magnet motor and the length range of the air gap between rotors was analyzed and the appropriate length obtained. NdFeB permanent magnets were used in this study. Permanent magnets can change the characteristics of the motor's torque. However, the distance between permanent magnets and the air gap will remain constant for each magnet. The impact of different magnet angles for the axial flux permanent magnet motor and other motor parameters was examined. To this aim, the different angles and torque values of the magnetic flux density were calculated using the finite element method of analysis with the help of Maxwell 3D software. Maximum torque was obtained with magnet angles of 21°, 26°, 31.4°, and 34.4°. Additionally, an important parameter for the axial flux permanent magnet motor in terms of the air gap flux was analyzed. Minimum flux change was obtained with a magnet angle of 26°. The magnetic flux of the magnet-to-air-gap is under 0.5 tesla. Given the height of the coil, the magnet-to-air-gap distance most suitable for the axial flux permanent magnet motor was 4 mm. Ill. 11, bibl. 4, tabl. 2 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.280


Author(s):  
Mehmet Demiroglu ◽  
Mustafa Gursoy ◽  
John A. Tichy

Thanks to their compliant nature and superior leakage performance over conventional labyrinth seals, brush seals found increasing use in turbomachinery. Utilizing high temperature super-alloy fibers and their compliance capability these seals maintain contact with the rotor for a wide range of operating conditions leaving minimal passage for parasitic leakage flow. Consequently, the contact force/pressure generated at seal rotor interface is of importance for sustained seal performance and longevity of its service life. Although some analytical and numerical models have been developed to estimate bristle tip pressures, they simply rely on linear beam equation calculations and other such assumptions for loading cases. In this paper, previously available analytical and/or numerical models for bristle tip force/pressure have been modified and enhanced. The nonlinear cantilever beam equation has been solved and results are compared to a linear cantilever beam equation solution to establish application boundaries for both methods. The results are also compared to experimental data. With the support of testing, an empirical model has been developed for tip forces under operating conditions.


Sign in / Sign up

Export Citation Format

Share Document