scholarly journals Swarmer Cell Development of the BacteriumProteus mirabilisRequires the Conserved Enterobacterial Common Antigen Biosynthesis GenerffG

2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Kristin Little ◽  
Murray J. Tipping ◽  
Karine A. Gibbs

ABSTRACTIndividual cells of the bacteriumProteus mirabiliscan elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating thatP. mirabilisrequires the generffGfor swarmer cell elongation and subsequent swarm motility. TherffGgene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein ofEscherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize therffGgene inP. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of therffGgene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that inrffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilisswarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, therffG-dependent moieties provide a novel attractive target for potential antimicrobials.

2017 ◽  
Author(s):  
Kristin Little ◽  
Murray J. Tipping ◽  
Karine A. Gibbs

AbstractIndividual cells of the bacteriumProteus mirabiliscan elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating thatP. mirabilisrequires the generffGfor swarmer cell elongation and subsequent swarm motility. TherffGgene encodes a protein homologous to the dTDP-glucose 4,6 dehydratase protein ofEscherichia coli, which contributes to Enterobacterial Common Antigen biosynthesis. Here we characterize therffGgene inP. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that absence of therffGgene induces several stress-responsive pathways including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that inrffG-deficient cells, suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that a RcsB-mediated response acts to suppress emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.Importance statementP. mirabilisswarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multi-functional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, therffG-dependent moieties provide a novel, attractive target for potential antimicrobials.


2015 ◽  
Vol 197 (15) ◽  
pp. 2499-2507 ◽  
Author(s):  
Kristen E. Howery ◽  
Katy M. Clemmer ◽  
Emrah Şimşek ◽  
Minsu Kim ◽  
Philip N. Rather

ABSTRACTA key regulator of swarming inProteus mirabilisis the Rcs phosphorelay, which repressesflhDC, encoding the master flagellar regulator FlhD4C2. Mutants inrcsB, the response regulator in the Rcs phosphorelay, hyperswarm on solid agar and differentiate into swarmer cells in liquid, demonstrating that this system also influences the expression of genes central to differentiation. To gain a further understanding of RcsB-regulated genes involved in swarmer cell differentiation, transcriptome sequencing (RNA-Seq) was used to examine the RcsB regulon. Among the 133 genes identified,minCandminD, encoding cell division inhibitors, were identified as RcsB-activated genes. A third gene,minE, was shown to be part of an operon withminCD. To examineminCDEregulation, theminpromoter was identified by 5′ rapid amplification of cDNA ends (5′-RACE), and both transcriptionallacZfusions and quantitative real-time reverse transcriptase (qRT) PCR were used to confirm that theminCDEoperon was RcsB activated. Purified RcsB was capable of directly binding theminCpromoter region. To determine the role of RcsB-mediated activation ofminCDEin swarmer cell differentiation, a polarminCmutation was constructed. This mutant formed minicells during growth in liquid, produced shortened swarmer cells during differentiation, and exhibited decreased swarming motility.IMPORTANCEThis work describes the regulation and role of the MinCDE cell division system inP. mirabilisswarming and swarmer cell elongation. Prior to this study, the mechanisms that inhibit cell division and allow swarmer cell elongation were unknown. In addition, this work outlines for the first time the RcsB regulon inP. mirabilis. Taken together, the data presented in this study begin to address howP. mirabiliselongates upon contact with a solid surface.


2014 ◽  
Vol 83 (3) ◽  
pp. 966-977 ◽  
Author(s):  
Ming-Che Liu ◽  
Kuan-Ting Kuo ◽  
Hsiung-Fei Chien ◽  
Yi-Lin Tsai ◽  
Shwu-Jen Liaw

Proteus mirabilisis a common human pathogen causing recurrent or persistent urinary tract infections (UTIs). The underlying mechanisms forP. mirabilisto establish UTIs are not fully elucidated. In this study, we showed that loss of the sigma factor E (RpoE), mediating extracytoplasmic stress responses, decreased fimbria expression, survival in macrophages, cell invasion, and colonization in mice but increased the interleukin-8 (IL-8) expression of urothelial cells and swarming motility. This is the first study to demonstrate that RpoE modulated expression of MR/P fimbriae by regulatingmrpI, a gene encoding a recombinase controlling the orientation of MR/P fimbria promoter. By real-time reverse transcription-PCR, we found that the IL-8 mRNA amount of urothelial cells was induced significantly by lipopolysaccharides extracted fromrpoEmutant but not from the wild type. These RpoE-associated virulence factors should be coordinately expressed to enhance the fitness ofP. mirabilisin the host, including the avoidance of immune attacks. Accordingly,rpoEmutant-infected mice displayed more immune cell infiltration in bladders and kidneys during early stages of infection, and therpoEmutant had a dramatically impaired ability of colonization. Moreover, it is noteworthy that urea (the major component in urine) and polymyxin B (a cationic antimicrobial peptide) can induce expression ofrpoEby the reporter assay, suggesting that RpoE might be activated in the urinary tract. Altogether, our results indicate that RpoE is important in sensing environmental cues of the urinary tract and subsequently triggering the expression of virulence factors, which are associated with the fitness ofP. mirabilis, to build up a UTI.


2012 ◽  
Vol 78 (8) ◽  
pp. 2914-2922 ◽  
Author(s):  
J. P. Bitoun ◽  
S. Liao ◽  
X. Yao ◽  
S.-J. Ahn ◽  
R. Isoda ◽  
...  

ABSTRACTPrevious studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation byStreptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression ofbrpAis regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In aGalleria mellonella(wax worm) model, BrpA deficiency was shown to diminish the virulence ofS. mutansOMZ175, which, unlikeS. mutansUA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain ofS. mutans.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Aurore Fleurie ◽  
Abdelrahim Zoued ◽  
Laura Alvarez ◽  
Kelly M. Hines ◽  
Felipe Cava ◽  
...  

ABSTRACTBolA family proteins are conserved in Gram-negative bacteria and many eukaryotes. While diverse cellular phenotypes have been linked to this protein family, the molecular pathways through which these proteins mediate their effects are not well described. Here, we investigated the roles of BolA family proteins inVibrio cholerae, the cholera pathogen. LikeEscherichia coli,V. choleraeencodes two BolA proteins, BolA and IbaG. However, in marked contrast toE. coli, wherebolAis linked to cell shape andibaGis not, inV. cholerae,bolAmutants lack morphological defects, whereasibaGproved critical for the generation and/or maintenance of the pathogen’s morphology. Notably, the bizarre-shaped, multipolar, elongated, and wide cells that predominated in exponential-phase ΔibaGV. choleraecultures were not observed in stationary-phase cultures. TheV. choleraeΔibaGmutant exhibited increased sensitivity to cell envelope stressors, including cell wall-acting antibiotics and bile, and was defective in intestinal colonization. ΔibaGV. choleraehad reduced peptidoglycan and lipid II and altered outer membrane lipids, likely contributing to the mutant’s morphological defects and sensitivity to envelope stressors. Transposon insertion sequencing analysis ofibaG’s genetic interactions suggested thatibaGis involved in several processes involved in the generation and homeostasis of the cell envelope. Furthermore, copurification studies revealed that IbaG interacts with proteins containing iron-sulfur clusters or involved in their assembly. Collectively, our findings suggest thatV. choleraeIbaG controls cell morphology and cell envelope integrity through its role in biogenesis or trafficking of iron-sulfur cluster proteins.IMPORTANCEBolA-like proteins are conserved across prokaryotes and eukaryotes. These proteins have been linked to a variety of phenotypes, but the pathways and mechanisms through which they act have not been extensively characterized. Here, we unraveled the role of the BolA-like protein IbaG in the cholera pathogenVibrio cholerae. The absence of IbaG was associated with dramatic changes in cell morphology, sensitivity to envelope stressors, and intestinal colonization defects. IbaG was found to be required for biogenesis of several components of theV. choleraecell envelope and to interact with numerous iron-sulfur cluster-containing proteins and factors involved in their assembly. Thus, our findings suggest that IbaG governsV. choleraecell shape and cell envelope homeostasis through its effects on iron-sulfur proteins and associated pathways. The diversity of processes involving iron-sulfur-containing proteins is likely a factor underlying the range of phenotypes associated with BolA family proteins.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
George K. Auer ◽  
Piercen M. Oliver ◽  
Manohary Rajendram ◽  
Ti-Yu Lin ◽  
Qing Yao ◽  
...  

ABSTRACT Swarmer cells of the Gram-negative uropathogenic bacteria Proteus mirabilis and Vibrio parahaemolyticus become long (>10 to 100 μm) and multinucleate during their growth and motility on polymer surfaces. We demonstrated that the increasing cell length is accompanied by a large increase in flexibility. Using a microfluidic assay to measure single-cell mechanics, we identified large differences in the swarmer cell stiffness (bending rigidity) of P. mirabilis (5.5 × 10−22 N m2) and V. parahaemolyticus (1.0 × 10−22 N m2) compared to vegetative cells (1.4 × 10−20 N m2 and 2.2 × 10−22 N m2, respectively). The reduction in bending rigidity (∼2-fold to ∼26-fold) was accompanied by a decrease in the average polysaccharide strand length of the peptidoglycan layer of the cell wall from 28 to 30 disaccharides to 19 to 22 disaccharides. Atomic force microscopy revealed a reduction in P. mirabilis peptidoglycan thickness from 1.5 nm (vegetative cells) to 1.0 nm (swarmer cells), and electron cryotomography indicated changes in swarmer cell wall morphology. P. mirabilis and V. parahaemolyticus swarmer cells became increasingly sensitive to osmotic pressure and susceptible to cell wall-modifying antibiotics (compared to vegetative cells)—they were ∼30% more likely to die after 3 h of treatment with MICs of the β-lactams cephalexin and penicillin G. The adaptive cost of “swarming” was offset by the increase in cell susceptibility to physical and chemical changes in their environment, thereby suggesting the development of new chemotherapies for bacteria that leverage swarming for the colonization of hosts and for survival. IMPORTANCE Proteus mirabilis and Vibrio parahaemolyticus are bacteria that infect humans. To adapt to environmental changes, these bacteria alter their cell morphology and move collectively to access new sources of nutrients in a process referred to as “swarming.” We found that changes in the composition and thickness of the peptidoglycan layer of the cell wall make swarmer cells of P. mirabilis and V. parahaemolyticus more flexible (i.e., reduce cell stiffness) and that they become more sensitive to osmotic pressure and cell wall-targeting antibiotics (e.g., β-lactams). These results highlight the importance of assessing the extracellular environment in determining antibiotic doses and the use of β-lactam antibiotics for treating infections caused by swarmer cells of P. mirabilis and V. parahaemolyticus.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Hervé Nicoloff ◽  
Saumya Gopalkrishnan ◽  
Sarah E. Ades

ABSTRACT The alternative sigma factor σE is a key component of the Escherichia coli response to cell envelope stress and is required for viability even in the absence of stress. The activity of σE increases during entry into stationary phase, suggesting an important role for σE when nutrients are limiting. Elevated σE activity has been proposed to activate a pathway leading to the lysis of nonculturable cells that accumulate during early stationary phase. To better understand σE-directed cell lysis and the role of σE in stationary phase, we investigated the effects of elevated σE activity in cultures grown for 10 days. We demonstrate that high σE activity is lethal for all cells in stationary phase, not only those that are nonculturable. Spontaneous mutants with reduced σE activity, due primarily to point mutations in the region of σE that binds the −35 promoter motif, arise and take over cultures within 5 to 6 days after entry into stationary phase. High σE activity leads to large reductions in the levels of outer membrane porins and increased membrane permeability, indicating membrane defects. These defects can be counteracted and stationary-phase lethality delayed significantly by stabilizing membranes with Mg2+ and buffering the growth medium or by deleting the σE-dependent small RNAs (sRNAs) MicA, RybB, and MicL, which inhibit the expression of porins and Lpp. Expression of these sRNAs also reverses the loss of viability following depletion of σE activity. Our results demonstrate that appropriate regulation of σE activity, ensuring that it is neither too high nor too low, is critical for envelope integrity and cell viability. IMPORTANCE The Gram-negative cell envelope and cytoplasm differ significantly, and separate responses have evolved to combat stress in each compartment. An array of cell envelope stress responses exist, each of which is focused on different parts of the envelope. The σE response is conserved in many enterobacteria and is tuned to monitor pathways for the maturation and delivery of outer membrane porins, lipoproteins, and lipopolysaccharide to the outer membrane. The activity of σE is tightly regulated to match the production of σE regulon members to the needs of the cell. In E. coli, loss of σE results in lethality. Here we demonstrate that excessive σE activity is also lethal and results in decreased membrane integrity, the very phenotype the system is designed to prevent.


2010 ◽  
Vol 192 (12) ◽  
pp. 3213-3221 ◽  
Author(s):  
Randy M. Morgenstein ◽  
Katy M. Clemmer ◽  
Philip N. Rather

ABSTRACT Proteus mirabilis is a Gram-negative bacterium that undergoes a physical and biochemical change from a vegetative swimmer cell (a typical Gram-negative rod) to an elongated swarmer cell when grown on a solid surface. In this study, we report that a transposon insertion in the waaL gene, encoding O-antigen ligase, blocked swarming motility on solid surfaces but had little effect on swimming motility in soft agar. The waaL mutant was unable to differentiate into a swarmer cell. Differentiation was also prevented by a mutation in wzz, encoding a chain length determinant for O antigen, but not by a mutation in wzyE, encoding an enzyme that polymerizes enterobacterial common antigen, a surface polysaccharide different from the lipid A::core. In wild-type P. mirabilis, increased expression of the flhDC operon occurs after growth on solid surfaces and is required for the high-level expression of flagellin that is characteristic of swarmer cells. However, in both the waaL and the wzz mutants, the flhDC operon was not activated during growth on agar. A loss-of-function mutation in the rcsB response regulator or overexpression of flhDC restored swarming to the waaL mutant, despite the absence of O antigen. Therefore, although O antigen may serve a role in swarming by promoting wettability, the loss of O antigen blocks a regulatory pathway that links surface contact with the upregulation of flhDC expression.


mBio ◽  
2021 ◽  
Author(s):  
Ashutosh K. Rai ◽  
Joseph F. Carr ◽  
David E. Bautista ◽  
Wei Wang ◽  
Angela M. Mitchell

Enterobacterial common antigen (ECA) is a conserved polysaccharide present on the surface of the outer membrane (OM) and in the periplasm of the many pathogenic bacteria belonging to Enterobacterales , including Klebsiella pneumoniae , Salmonella enterica , and Yersinia pestis . As the OM is a permeability barrier that excludes many antibiotics, synthesis pathways for OM molecules are promising targets for antimicrobial discovery.


2017 ◽  
Vol 199 (20) ◽  
Author(s):  
Susan Gottesman

ABSTRACT Bacteria have robust responses to a variety of stresses. In particular, bacteria like Escherichia coli have multiple cell envelope stress responses, and generally we evaluate what these responses are doing by the repair systems they induce. However, probably at least as important in interpreting what is being sensed as stress are the genes that these stress systems downregulate, directly or indirectly. This is discussed here for the Cpx and sigma E systems of E. coli.


Sign in / Sign up

Export Citation Format

Share Document