Implementation of a Method for Free-Spanning Pipeline Analysis

2021 ◽  
Author(s):  
Joannes Gullaksen

Abstract The scope of this paper is to provide a method implemented in an application for assessment of dynamic response of free spanning pipelines subjected to combined wave and current loading. The premises for the paper are based on application development within pipeline free span evaluation in a software development project. A brief introduction is provided to the basic hydrodynamic phenomena, principles and parameters for dynamic response of pipeline free spans. The choice of method for static and dynamic span modelling has an influence on calculated modal frequencies and associated stresses. Due to the importance of frequencies and stresses for fatigue and environmental loading calculations, the choice of analysis approach influences the partial safety factor format. The aim of the structural analysis is to provide the necessary input to the calculations of VIV and force model response, and to provide realistic estimations of static loading from functional loads. Environmental flow conditions are implemented in the application, such as steady flow due to current, oscillatory flow due to waves and combined flow due to current and waves. Combined wave and current loading include the long-term current velocity distribution, short-term and long-term description of wave-induced flow velocity amplitude and period of oscillating flow at the pipe level and return period values. Inline and cross-flow vibrations are considered in separate response models. For pipelines and risers, modes are categorized in in-line or cross-flow direction. A force model is also considered for the short-term fatigue damage due to combined current and direct wave actions. Design criteria can be specified for ultimate limit state (ULS) and fatigue limit state (FLS) due to in-line and cross-flow vortex induced vibrations (VIV) and direct wave loading.

Author(s):  
Knut Vedeld ◽  
Håvar Sollund ◽  
Olav Fyrileiv

Pipeline free span design has evolved from basic avoidance criteria in the DNV ’76 rules [1], to fatigue and ultimate limit state considerations in Guideline no. 14 [2]. Modern multimode, multi-span free span design is predominantly performed according to DNV-RP-F105 [3]. In 2006, the latest revision of DNV-RP-F105 [3] was written as a direct result of extensive research, performed due to significant free span challenges in the Ormen Lange pipeline project. DNV-RP-F105 was at the time, and still is, the only pipeline design code giving contemporary design guidance for vortex induced vibrations (VIV) and direct wave loading design for pipelines in free spans. The last revision of DNV-RP-F105 included a few, but highly important advances, particularly the consideration for multi-mode and multi-span pipeline dynamic response behavior. In the 10 years that have followed, no breakthroughs of similar magnitude have been achieved for pipeline free spans, but a large number of incremental improvements to existing calculation methods, and some novel advances in less critical aspects of VIV understanding have been made. As a result, DNV-RP-F105 has recently been revised to account for these advances, which include improved frequency-domain analyses of wave-induced fatigue, a new response model for cross-flow VIV in low Keulegan-Carpenter (KC) regimes in pure waves, new analytical methods for dynamic response calculations of short spans in harsh conditions, and extensive guidance on how to apply the recommended practice for assessment of fatigue and extreme environmental load effects on curved structural members such as spools, jumpers and manifold flexloops. This paper gives an overview of most of the important changes and updates to the new revision of DNV-RP-F105. Case studies are used to demonstrate the importance and effects of the changes made, and to some extent how the revision of DNV-RP-F105 can enhance its applicability and ease of use.


2021 ◽  
Author(s):  
Joannes Gullaksen

Free-spanning pipelines is a phenomenon occurring on uneven seabed and scouring phenomena around the exposed pipeline. To study how free-spanning pipelines are affected from these phenomena, it is necessary to study environmental hydrodynamic flow conditions surrounding the pipeline, such as steady flow due to current, oscillatory flow due to waves and combined flow due to current and waves. Combined wave and current loading include the long-term current velocity distribution, short-term and long-term description of wave-induced flow velocity amplitude and period of oscillating flow at the pipe level and return period values. The bending stresses and associated fatigue life are determined from the given span length and boundary conditions accounting for bending due to self-weight and environmental loading from combined direct wave action and vortex induced vibrations (VIV). The fatigue damage is calculated and integrated over all selected directions, corresponding long-term sea-states and current. Fatigue life is calculated for the in-line response model, in-line force model and the cross-flow response model. The design fatigue life for the in-line mode is a combination of the response model and the force model. Peak dynamic stresses are found from the extreme wave and current conditions and are calculated for cross-flow and in-line response. The premises for this paper are based on application development within pipeline free span evaluation in a software development project based on DNVGL recommended practice, DNVGL-RP-F105. It provides a brief introduction to a software application used to calculate parameters addressing how free-spanning pipelines are affected considering stresses, damage and fatigue life.


Author(s):  
Aaron Dinovitzer ◽  
Sanjay Tiku ◽  
Vlado Semiga ◽  
Abdelfettah Fredj ◽  
Joe Zhou ◽  
...  

While the formation of a wrinkle in an onshore pipeline is an undesirable event, in many instances this event does not have immediate pipeline integrity implications. The magnitude or severity of a wrinkle formed due to displacement controlled loading processes (e.g. slope movement, fault displacement, frost heave and thaw settlement) may increase with time, eventually causing serviceability concerns (e.g. fluid flow or inspection restrictions). Pipe wall damage leading to cracking and eventually a loss of containment involves contributions from the wrinkle formation and growth processes, as well as, wrinkle deformations promoted by in-service line pressure, temperature and seasonal soil displacements. The objective of this paper is to provide an overview of the ongoing research efforts, sponsored by TransCanada PipeLines Ltd. and Tokyo Gas Co. Ltd., towards the development of a mechanics based wrinkle ultimate limits state that may be used in future to evaluate the long term integrity of wrinkled pipeline segments. The research efforts include non-linear finite element modeling to demonstrate the ability of experimentally derived material properties to predict the formation of through wall cracking induced by high and low frequency load effects. This paper outlines the material testing program used to support the development of failure criteria capable of considering the contributions of monotonic deformation, as well as, high and low cycle cyclic loading.


Author(s):  
Federico Barranco Cicilia ◽  
Edison Castro Prates de Lima ◽  
Lui´s Volnei Sudati Sagrilo

This paper presents a methodology for reliability analysis of Tension Leg Platform (TLP) tendons subjected to extraordinary sea state conditions like hurricanes or winter storms. A coupled approach in time domain is used to carry out TLP random nonlinear dynamic analysis including wind, current and first and second order wave forces. The tendons Ultimate Limit State (ULS) condition is evaluated by an Interaction Ratio (IR) taking into account dynamic combination among tension, bending and hydrostatic pressure. Expected long-term extreme IR is obtained through the integration of cumulative probability functions (CPFs) fitted to response maxima associated to individual short term sea states. The reliability analysis is performed using a time-integrated scheme including uncertainties in loads, tendon strength, and analytical models. Failure probabilities for the most loaded tendon of a TLP in Campeche Bay, Mexico, considering a 100-yr design sea state and the 100-yr extreme response generated by long-term observed storms are compared.


2007 ◽  
Vol 13 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Algirdas Kudzys ◽  
Romualdas Kliukas ◽  
Antanas Kudzys

An effect of structural and technological features on the design methodology of hyperstatic precast reinforced concrete and composite steel‐concrete structures is discussed. Permanent and variable service, snow and wind loads of buildings and their extreme values are analysed. Two loading cases of precast reinforced concrete and composite steel‐concrete continuous and sway frame beams as propped and unpropped members are considered. A redistribution of bending moments for the ultimate limit state of beams is investigated. A limit state verification of hyperstatic beams by the partial factor and probability‐based methods is presented. It is recommended to calculate a long‐term survival probability of beams by the analytical method of transformed conditional probabilities.


Author(s):  
Gunnar Lian ◽  
Sverre K. Haver

Characteristic loads for design of offshore structures are defined in terms of their annual exceedance probability, q. In the Norwegian Petroleum Regulations, q = 10−2 is required for the ultimate limit state (ULS), while q = 10−4 is required for the accidental limit state (ALS). In principle, a full long-term analysis (LTA) is required in order to obtain consistent estimates. This is straightforward for linear response problems, while it is a challenge for nonlinear problems, in particular if they additionally are of an on–off nature. The latter will typically be the case for loads due to breaking wave impacts. In this paper, the challenges related to estimation of characteristic slamming loads are discussed. Measured slamming loads from a model test are presented, and the observed large variability is discussed. The stochastic nature of slamming loads is studied using a simplified linear relation between the sea states and the Gumbel distribution parameter surfaces. The characteristic slamming loads with q-annual probability of exceedance are estimated from an LTA using the short-term distribution of the slamming loads and the long-term distribution of the sea states. The effect of integrating over a smaller area of the scatter diagram of the sea states is studied. The uncertainties in response from slamming loads are compared to a more common response process, and the relation between variability and the number of realizations in each sea state is looked into.


2015 ◽  
Vol 21 (7) ◽  
pp. 902-911 ◽  
Author(s):  
Zdeněk Kala

The paper deals with the analysis of reliability of a hot-rolled steel IPE-beam designed according to Eurocodes. A beam at its ultimate limit state is considered. The load acting on the beam consists of permanent and long-term single variation actions. The beam is loaded with end bending moments about the major principal axis. The beam is susceptible to lateral torsional buckling between the end supports. Reliability of the beam is assessed using probabilistic analysis based on the Monte Carlo method. Failure probability is a function of the random variability of the loadcarrying capacity and the random variability of load effects. The variability of the load-carrying capacity is influenced by the variability of initial imperfections. Imperfections are considered according to experimental research. Numerical studies showed that the failure probability is significantly misaligned. High values of failure probability were obtained for slender beams, for beams loaded only by permanent load action, and for beams loaded only by long-term single variation load. In further studies the values of partial safety factors of load and resistance were calibrated so that the failure probability had a target value of 7.2E–5. Relatively high values of partial safety factors were obtained especially for beams with high slenderness.


Author(s):  
Paulo Mauricio Videiro ◽  
Luis Volnei Sudati Sagrilo

This paper compares two approaches for the estimation of long-term response of wave load effects on offshore structures. These approaches are applied to estimate the extreme value of the cross section interaction ratio of a tubular component of the bracing system of a semisubmersible platform. The tubular component is subjected to axial loads and bending moments due to static loads and wave effects. The iteration ratio in the ultimate limit state is defined by applying design criteria derived from API RP-2A LRFD [6]. The approaches are also applied to estimate the long-term response of a single degree of freedom system due to wave actions. The first approach is based on the proposals of Videiro and Moan [3]. The results of the first approach are compared with a new model of long-term response estimation, based on the up-crossing rate distribution of the response process.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Knut Andreas Kvåle ◽  
Ole Øiseth

Herein, numerical predictions of the dynamic response of an existing floating pontoon bridge are compared with the measured dynamic response. Hydrodynamic coefficients that describe the fluid-structure interaction and the wave transfer functions are obtained by applying linear potential theory. The results obtained from the hydrodynamic analysis are combined with a beam model of the bridge in a finite element method (FEM) framework to enable stochastic response prediction through the power spectral density method. The standard deviations of the predicted accelerations are compared with the standard deviations of the measured accelerations, and the overall quality of the prediction model is discussed. Predictions with sea states related to the serviceability limit state (SLS) and ultimate limit state (ULS) conditions used in design of the bridge are emphasized. To investigate the behaviour more in depth, a measurement segment is chosen and predictions of the displacement response power spectral density due to excitation characterized by the recorded sea surface elevation are compared with those obtained from the corresponding response measurements. A decent agreement is obtained for both cases when using the model as it is and with waves as the only excitation source, but significant discrepancies are present, in particular, for the torsional components. By including preliminary contributions from wind action and relying on a model optimized against measured modal parameters, a satisfactory agreement is obtained. The effect on the response of an uncertain structural damping is also quantified and concluded to be significant within realistic damping levels.


Author(s):  
Gunnar Lian ◽  
Sverre K. Haver

Characteristic loads for design are defined in terms of their annual exceedance probability, q. For ultimate limit state (ULS) q = 10−2, while q = 10−4 for accidental limit state (ALS). In principle a full long term analysis is required in order to obtain consistent estimates. This is straight forward for linear response problems, while it is a challenge for non-linear problems in particular if they additionally are of an on-off nature. The latter will typically be the case for loads due to breaking wave impacts. The Contour line approach is an alternative convenient method to estimate the long term extreme response, based on short term statistics from an appropriate sea state. The consequence of very large short term variability (large coefficient of variation for 3-hour extreme value) on the application of the contour method will be discussed. The long term integral is carried out over all sea state combinations. The lowest sea states will of course not affect the extremes. However, for the impact problem the short term variability is much larger than for most response cases. The coefficient of variation of the 3-hour maximum impact pressure is often between 0.5 and 1, while for a typical response process it is between 0.1 and 0.2. Due to the large variability, lower sea states than normal will contribute to the long term response. In this paper the irregularity of the response surface, and the uncertainties related to the number of seeds used in each sea state is looked into. The focus is on slamming loads from breaking waves, and some results from a model test are presented. The uncertainties in long term response from slamming loads are compared to a more common response process. The effect on the long term response when integrating over a reduced area of sea states in the scatter diagram is discussed.


Sign in / Sign up

Export Citation Format

Share Document