Fault Isolation of Metal-Insulator-Metal (MiM) Capacitor Failures by Lock-in Thermography (LIT)

Author(s):  
Ke-Ying Lin ◽  
Pei-Fen Lue ◽  
Jayce Liu ◽  
Paul Kenneth Ang

Abstract The paper demonstrates accurate fault isolation information of metal-insulator-metal (MiM) capacitor failures by lock-in thermograph (LIT). In this study, a phase image spot location at a lock-in frequency larger than 5 Hz gives more accurate defect localization than an LIT amplitude image or OBIRCH to determine the next FA steps.

Author(s):  
Ian Kearney ◽  
Mark Dipsey

Abstract Photoluminescence, defect-band emission, and Lock-in Infrared Thermography (LIT) generally enable the correlation of multi-crystalline silicon defect types. Long Wavelength Infrared (LWIR) thermal imaging has traditionally seen limited application in failure analysis. LWIR cameras are typically uncooled systems using a microbolometer Focal Plane Arrays (FPA) commonly used in industrial IR applications, although cooled LWIR cameras using Mercury Cadmium Tellurium (MCT) detectors exists as well. On the contrary, the majority of the MWIR cameras require cooling, using either liquid nitrogen or a Stirling cycle cooler. Cooling to approximately −196 °C (77 K), offers excellent thermal resolution, but it may restrict the span of applications to controlled environments. Recent developments in LWIR uncooled and unstabilized micro-bolometer technology combined with microscopic IR lens design advancements are presented as an alternative solution for viable low-level leakage (LLL) defect localization and circuit characterization. The 30 micron pitch amorphous silicon type detector used in these analyses, rather than vanadium oxide (VOx), has sensitivity less than 50mK at 25C. Case studies reported demonstrate LWIR enhanced package-level and die-level defect localization contrasted with other quantum and thermal detectors in localization systems.


Author(s):  
Christian Schmidt ◽  
Frank Altmann ◽  
David P. Vallett

Abstract Lock-in thermography and magnetic current imaging are emerging as the two image-based fault isolation methods most capable of meeting the challenges of short and open defect localization in thick, opaque assemblies. Such devices are rapidly becoming prevalent as 3D integration begins to ramp up production. This paper expands on previously published work with a qualitative comparison of the techniques on single chip and stacked die packages with known designed-in or FIB created defects.


2010 ◽  
Vol 44-47 ◽  
pp. 576-580
Author(s):  
Yan Guang Zhao ◽  
Xing Lin Guo ◽  
Ming Fa Ren

Lock-in infrared thermography method was gradually being used in fatigue studies because of its advantages such as real-time, quick-reaction, non-contact, non-destructive and so on. In this paper, non-destructive testing was applied to fatigue specimen with defects, based on lock-in infrared thermography. In parallel, the result was analyzed by using lock-in infrared thermography system developed by Cedip in French. The results show that more information of internal detects can be found from phase image than that from amplitude image. The experiment procedure indicated that a proper testing frequency was the key to the non-destructive testing. The data revealed that deeper depth and larger area of defect led to a precise testing result.


2015 ◽  
Vol 55 (9-10) ◽  
pp. 1640-1643 ◽  
Author(s):  
V. Giuffrida ◽  
P. Barbarino ◽  
G. Muni ◽  
G. Calvagno ◽  
G. Latteo ◽  
...  

2021 ◽  
Author(s):  
Kuang Shien Lee ◽  
Lai Khei Kuan

Abstract MIM (Metal-Insulator-Metal) capacitor is a capacitor fabricated between metal layers and usually in an array form. Since it is usually buried within stack of back-end metal layers, neither front side nor backside FA fault isolation techniques can easily pinpoint the defect location of a failing MIM capacitor. A preliminary fault isolation (FI) often needs to be performed by biasing the desired failing state setup to highlight the difference(s) of FI site(s) between failing unit & reference. Then, a detailed study of the CAD (Computer Aided Design) schematic and die layout focusing on the difference(s) of FI site(s) will lead to a more in-depth analyses such as Focused Ion-Beam (FIB) circuit edit, micro-probing/nano-probing, Voltage Contrast (VC) and other available FA techniques to further identify the defective MIM capacitor. Once the defective MIM capacitor was identified, FIB cross-section or delayering can be performed to inspect the physical defect on the MIM capacitor. This paper presents the FA approach and challenges in successfully finding MIM capacitor failures.


2018 ◽  
Author(s):  
Ke-Ying Lin ◽  
Chih-Yi Tang ◽  
Yu Chi Wang

Abstract The paper demonstrates the moving of lock-in thermography (LIT) spot location by adjusting the lock-in frequency from low to high. Accurate defect localization in stacked-die devices was decided by the fixed LIT spot location after the lock-in frequency was higher than a specific value depending on the depth of the defect in the IC. Physical failure analysis was performed based on LIT results, which provided clear physical defect modes of the stacked-die devices.


Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


Author(s):  
Mayue Xie ◽  
Zhiguo Qian ◽  
Mario Pacheco ◽  
Zhiyong Wang ◽  
Rajen Dias ◽  
...  

Abstract Recently, a new approach for isolation of open faults in integrated circuits (ICs) was developed. It is based on mapping the radio-frequency (RF) magnetic field produced by the defective part fed with RF probing current, giving the name to Space Domain Reflectometry (SDR). SDR is a non-contact and nondestructive technique to localize open defects in package substrates, interconnections and semiconductor devices. It provides 2D failure isolation capability with defect localization resolution down to 50 microns. It is also capable of scanning long traces in Si. This paper describes the principles of the SDR and its application for the localization of open and high resistance defects. It then discusses some analysis methods for application optimization, and gives examples of test samples as well as case studies from actual failures.


2011 ◽  
Author(s):  
Terrance O'Regan ◽  
Matthew Chin ◽  
Cheng Tan ◽  
Anthony Birdwell

Sign in / Sign up

Export Citation Format

Share Document