epidemiological typing
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 11)

H-INDEX

30
(FIVE YEARS 1)

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1260
Author(s):  
Vladislav Jakubu ◽  
Lucia Malisova ◽  
Martin Musilek ◽  
Katarina Pomorska ◽  
Helena Zemlickova

The surveillance data on antibiotic resistance of Haemophilus influenzae have shown that strains with non-enzymatic resistance to β-lactam antibiotics have been on the rise in the Czech Republic over the last decade. This type of resistance is more difficult to detect than β-lactamase production. Analysis of 228 H. influenzae strains revealed that isolates with non-enzymatic resistance to β-lactams due to mutations in the ftsI gene could be reliably demonstrated by single run testing of susceptibility to amoxicillin/clavulanic acid (sensitivity of detection is 84.6%), cefuroxime (92.6%), ampicillin and penicillin (both 95.7%). Thirty-seven different amino acid substitution combinations were detected in the PBP3 protein at 23 positions (V329I, D350N, S357N, A368T, M377I, S385T, A388V, L389F, P393L, A437S, I449V, G490E, I491V, R501L, A502S, A502T, A502V, V511A, R517H, I519L, N526K, A530S, and T532S). The most common combination (35%) of amino acid substitutions was the combination D350N, M377I, A502V, N526K. Epidemiological typing does not indicate a clonal spread of a particular MLST type. Altogether there has been detected 74 STs. The most prevalent ST 1034 was associated mainly with a combination D350N, M377I, A502V, N526K. Clonal analysis revealed six clonal complexes (CCs) with the founder found, eight CCs without founder and 33 singletons.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1849
Author(s):  
Norhan K. Abd El-Aziz ◽  
Ahmed M. Ammar ◽  
Hend M. El Damaty ◽  
Rehab A. Abd Elkader ◽  
Hosam A. Saad ◽  
...  

Mastitis remains a serious problem for dairy animals. The misappropriation of antimicrobial agents helps accelerate resistance, which poses a serious challenge in controlling environmental S. uberis infection. Here, we study the virulence attributes, antimicrobial and biocide resistance, and epidemiological typing of S. uberis recovered from bovine clinical mastitis in dairy farms of diverse hygienic interventions in Egypt. The overall S. uberis infection rate was 20.59%; all were multidrug-resistant (MDR). The sua gene was the most frequent virulence gene (42.02%), followed by pauA (40.57%), cfu (21.73%), skc (20.28%), and opp (11.59%). The erm(B) gene served as the predominant antimicrobial-resistant gene (75.36%), followed by fexA (52.63%) and tet(M), blaZ, and aac(6′)aph(2″) genes (46.38% each). Of note, 79.71%, 78.26%, and 18.84% of S. uberis isolates harbored qacED1, qacC/D, and qacA/B genes, respectively. All analyzed isolates were S. uberis type I by their unique RFLP–PCR pattern. In conclusion, the sustained presence of pauA and sua genes throughout the investigated farms contributes to a better understanding of the bacterium’s pathogenicity. Furthermore, MDR coupled with the existence of biocide resistance genes indicates the importance of S. uberis surveillance and the prudent use of antimicrobials in veterinary clinical medicine to avoid the dissemination of antimicrobial resistance.


Author(s):  
Lieke B. van Alphen ◽  
Christian J. H. von Wintersdorff ◽  
Paul H. M. Savelkoul

2020 ◽  
Vol 25 (41) ◽  
Author(s):  
Sebastian Banhart ◽  
Klaus Jansen ◽  
Susanne Buder ◽  
Thalea Tamminga ◽  
Sébastien Calvignac-Spencer ◽  
...  

Background Emerging antimicrobial resistance (AMR) challenges gonorrhoea treatment and requires surveillance. Aim This observational study describes the genetic diversity of Neisseria gonorrhoeae isolates in Germany from 2014 to 2017 and identifies N. gonorrhoeae multi-antigen sequence typing (NG-MAST) genogroups associated with AMR or some patient demographics. Methods 1,220 gonococcal isolates underwent AMR testing and NG-MAST. Associations between genogroups and AMR or sex/age of patients were statistically assessed. Results Patients’ median age was 32 years (interquartile range: 25–44); 1,078 isolates (88.4%) originated from men. In total, 432 NG-MAST sequence types including 156 novel ones were identified, resulting in 17 major genogroups covering 59.1% (721/1,220) of all isolates. Genogroups G1407 and G10557 (G7072) were significantly associated with decreased susceptibility to cefixime (Kruskal–Wallis chi-squared: 549.3442, df: 16, p < 0.001). Their prevalences appeared to decline during the study period from 14.2% (15/106) to 6.2% (30/481) and from 6.6% (7/106) to 3.1% (15/481) respectively. Meanwhile, several cefixime susceptible genogroups’ prevalence seemed to increase. Proportions of isolates from men differed among genogroups (Fisher’s exact test, p < 0.001), being e.g. lower for G25 (G51) and G387, and higher for G5441 and G2992. Some genogroups differed relative to each other in affected patients’ median age (Kruskal–Wallis chi-squared:  47.5358, df:  16, p < 0.001), with e.g. G25 (G51) and G387 more frequent among ≤ 30 year olds and G359 and G17420 among ≥ 40 year olds. Conclusion AMR monitoring with molecular typing is important. Dual therapy (ceftriaxone plus azithromycin) recommended in 2014 in Germany, or only the ceftriaxone dose of this therapy, might have contributed to cefixime-resistant genogroups decreasing.


2020 ◽  
Vol 6 (3) ◽  
pp. 146
Author(s):  
Mansoureh Vatanshenassan ◽  
Teun Boekhout ◽  
Norman Mauder ◽  
Vincent Robert ◽  
Thomas Maier ◽  
...  

Candida auris is an emerging opportunistic yeast species causing nosocomial outbreaks at a global scale. A few studies have focused on the C. auris genotypic structure. Here, we compared five epidemiological typing tools using a set of 96 C. auris isolates from 14 geographical areas. Isolates were analyzed by microsatellite typing, ITS sequencing, amplified fragment length polymorphism (AFLP) fingerprint analysis, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and Fourier-transform infrared (FTIR) spectroscopy methods. Microsatellite typing grouped the isolates into four main clusters, corresponding to the four known clades in concordance with whole genome sequencing studies. The other investigated typing tools showed poor performance compared with microsatellite typing. A comparison between the five methods showed the highest agreement between microsatellite typing and ITS sequencing with 45% similarity, followed by microsatellite typing and the FTIR method with 33% similarity. The lowest agreement was observed between FTIR spectroscopy, MALDI-TOF MS, and ITS sequencing. This study indicates that microsatellite typing is the tool of choice for C. auris outbreak investigations. Additionally, FTIR spectroscopy requires further optimization and evaluation before it can be used as an epidemiological typing method, comparable with microsatellite typing, as a rapid method for tracing nosocomial fungal outbreaks.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anbjørg Rangberg ◽  
Astri Lervik Larsen ◽  
Oliver Kacelnik ◽  
Hanne Skarpodde Sæther ◽  
Marthe Bjørland ◽  
...  

2019 ◽  
Vol 14 (12) ◽  
pp. 1065-1080 ◽  
Author(s):  
Rayane Rafei ◽  
Marwan Osman ◽  
Fouad Dabboussi ◽  
Monzer Hamze

The outstanding ability of Acinetobacter baumannii to cause outbreaks and acquire multidrug resistance motivated the development of a plethora of typing techniques, which can help infection preventionists and hospital epidemiologists to more efficiently implement intervention controls. Nowadays, the world is witnessing a gradual transition from traditional typing methodology to whole genome sequencing-based approaches. Such approaches are opening new prospects and applications never achieved by existing typing methods. Herein, we provide the reader with an updated review on A. baumannii typing methods recapping the added value of well-established techniques previously applied for A. baumannii and detailing new ones (as clustered regularly interspaced short palindromic repeats-based typing) with a special focus on whole genome sequencing.


Sign in / Sign up

Export Citation Format

Share Document