sublimation temperature
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 92 (1) ◽  
pp. 76
Author(s):  
Е.В. Гуренцов ◽  
А.В. Дракон ◽  
А.В. Еремин ◽  
Р.Н. Колотушкин ◽  
Е.Ю. Михеева

In this paper, the dependence of the sublimation temperature of soot particles synthesized during the combustion of various hydrocarbons, depending on their size and structure, is obtained. The experimental approach is based on the analysis of the thermal radiation of particles heated to the sublimation temperature by a nanosecond laser pulse. The sublimation temperature of soot particles was measured using the two-color pyrometry method. In this paper, it is proposed to use the average size of primary particles to compare data in different flames. It is established, that the sublimation temperature of soot particles depends mainly on the stage of their formation, which is characterized by an increase in average size. It is shown, that with an increase in the average particle size from 12 to 23 nm, their sublimation temperature increases significantly from 2700 to 4500 K. This reflects a significant difference in the thermodynamic and optical properties of the so-called "young" and "mature" soot particles, which must be taken into account when developing methods of soot diagnostics and in the thermo-physical analysis of combustion and pyrolysis processes with the formation of soot.


2021 ◽  
Vol 647 ◽  
pp. A175 ◽  
Author(s):  
Chris W. Ormel ◽  
Allona Vazan ◽  
Marc G. Brouwers

During their formation, planets form large, hot atmospheres due to the ongoing accretion of solids. It has been customary to assume that all solids end up at the center, constituting a “core” of refractory materials, whereas the envelope remains metal-free. However, recent work, as well as observations by the Juno mission, indicate that the distinction may not be so clear cut. Indeed, small silicate, pebble-sized particles will sublimate in the atmosphere when they hit the sublimation temperature (T ~ 2000 K). In this paper we extend previous analytical work to compute the properties of planets within such a pebble accretion scenario. We conduct 1D numerical calculations of the atmosphere of an accreting planet, solving the stellar structure equations, augmented by a nonideal equation of state that describes a hydrogen and helium-silicate vapor mixture. Calculations terminate at the point where the total mass in metal is equal to that of the H+He gas, which we numerically confirm as the onset of runaway gas accretion. When pebbles sublimate before reaching the core, insufficient (accretion) energy is available to mix dense, vapor-rich lower layers with the higher layers of lower metallicity. A gradual structure in which Z decreases with radius is therefore a natural outcome of planet formation by pebble accretion. We highlight, furthermore, that (small) pebbles can act as the dominant source of opacity, preventing rapid cooling and presenting a channel for (mini-)Neptunes to survive in gas-rich disks. Nevertheless, once pebble accretion subsides, the atmosphere rapidly clears followed by runaway gas accretion. We consider atmospheric recycling to be the most probable mechanism to have stalled the growth of the envelopes of these planets.


Author(s):  
Matthew J Temple ◽  
Manda Banerji ◽  
Paul C Hewett ◽  
Amy L Rankine ◽  
Gordon T Richards

Abstract Using data from SDSS, UKIDSS and WISE, we investigate the properties of the high-frequency cutoff to the infrared emission in ≃5000 carefully selected luminous (Lbol ∼ 1047) type 1 quasars. The strength of ≃2 μm emission, corresponding to emission from the hottest ($T>1200\rm \, K$) dust in the sublimation zone surrounding the central continuum source, is observed to correlate with the blueshift of the C iv λ1550 emission line. We therefore find that objects with stronger signatures of nuclear outflows tend to have a larger covering fraction of sublimation-temperature dust. When controlling for the observed outflow strength, the hot dust covering fraction does not vary significantly across our sample as a function of luminosity, black hole mass or Eddington fraction. The correlation between the hot dust and the C iv line blueshifts, together with the lack of correlation between the hot dust and other parameters, therefore provides evidence of a link between the properties of the broad emission line region and the infrared-emitting dusty regions in quasars.


2020 ◽  
Author(s):  
James Owen

<p>Snow-lines are thought to play a vital role in the evolution of protoplanetary discs and planet formation at all scales. Snow-lines occur in regions of the protoplanetary discs where the temperature reaches the sublimation temperature and volatiles transition from the solid phase to the vapour phase (or vice-versa). However, in the outer region of protoplanetary discs (beyond a few AU), the temperature is set by the distribution of solids and their ability to absorb stellar light. Thus, the thermodynamics of the disc and the volatile phases are inextricably linked. In this talk, I will show this coupling is thermally unstable, and snow-lines continually evolve in regions of the disc that are marginally optically thick. Patches of the disc proceeding through a limit cycle, where volatiles in a region of the disc continually condense and then sublimate. Using numerical simulations of the CO snow-line I will show it can move 10s AU over 10,000 years, repeatedly. I will use these simulations to discuss how this new process may effect measured Carbon abundances, solid evolution and ultimately planet formation, making connections to high-resolution images of protoplanetary discs. </p>


2020 ◽  
pp. 47-57
Author(s):  
Faouzi Ayari ◽  
Emna Mannei

The aqueous and solid-state ionic exchanges are widely used for introducing chromium ions into ZSM-5 zeolite (Si/2Al = 30 and 50). However, along with their benefits, these exchange methods presented some disadvantages, essentially related to the wasted chemicals. As alternative, we investigated the exchange of Cr and Mo ions into ZSM-5 zeolite by conventional sublimation. Unfortunately, this method exhibited many constraints which were essentially related to the discrepancy between the exchange and the sublimation temperature values (Texch and Tsub, respectively). In this work, we proposed a general design of an experimental set-up required for introducing metallic ions into zeolites regardless Texch and Tsub values. Technically, the implementation of the proposed set-up requires two tubular furnaces, two temperature regulators and a linear reactor.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 306
Author(s):  
Chunling Wu ◽  
Yang Luo ◽  
Kai Zhao ◽  
Xiaobing Yu ◽  
Xian Zhang ◽  
...  

In this paper, direct coal liquefaction residue was prepared from Shen-dong coal, and the solubility of the residue in five organic solvents was studied. Then, an experimental device was set up to recover molybdenum (Mo) compounds from the direct coal liquefaction residue after extraction, and the influences of sublimation temperature and duration on recycling efficiency were examined. The recycled Mo-based products were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and a thermal analyzer. The results reveal that the optimum extraction conditions were obtained through ultrasonic extraction with a quinoline solvent and the highest recycling efficiency occurred for sublimation at 900 °C for 30 min. The recycled products are identified to be α-MoO3 crystals. Moreover, the α-MoO3 crystal is thermally stable before the temperature reaches its melting point.


2020 ◽  
Vol 0 (0) ◽  
pp. 2009036-0
Author(s):  
Peiliang Lü ◽  
Caiyun Gao ◽  
Xiuhong Sun ◽  
Mingliang Sun ◽  
Zhipeng Shao ◽  
...  

2019 ◽  
Vol 489 (2) ◽  
pp. 1572-1589 ◽  
Author(s):  
H Landt ◽  
M J Ward ◽  
D Kynoch ◽  
C Packham ◽  
G J Ferland ◽  
...  

Abstract We have recently initiated the first spectroscopic dust reverberation programme on active galactic nuclei in the near-infrared. Spectroscopy enables measurement of dust properties, such as flux, temperature, and covering factor, with higher precision than photometry. In particular, it enables measurement of both luminosity-based dust radii and dust response times. Here we report results from a 1 yr campaign on NGC 5548. The hot dust responds to changes in the irradiating flux with a lag time of ∼70 light-days, similar to what was previously found in photometric reverberation campaigns. The mean and rms spectra are similar, implying that the same dust component dominates both the emission and the variations. The dust lag time is consistent with the luminosity-based dust radius only if we assume a wavelength-independent dust emissivity law, i.e. a blackbody, which is appropriate for grains of large sizes (of a few μm). For such grains the dust temperature is ∼1450 K. Therefore, silicate grains have most likely evaporated and carbon is the main chemical component. But the hot dust is not close to its sublimation temperature, contrary to popular belief. This is further supported by our observation of temperature variations largely consistent with a heating/cooling process. Therefore, the inner dust-free region is enlarged and the dusty torus rather a ‘dusty wall’, whose inner radius is expected to be luminosity-invariant. The dust-destruction mechanism that enlarges the dust-free region seems to also partly affect the dusty region. We observe a cyclical decrease in dust mass with implied dust reformation times of ∼5–6 months.


2019 ◽  
Vol 15 (S359) ◽  
pp. 460-461
Author(s):  
D. Dias dos Santos ◽  
A. Rodríguez-Ardila ◽  
M. Marinello

AbstractWe present a spectral atlas of 70 type-I AGN with the wavelength ranging 0.4–2.5 μm. For 37 sources, this is the first report of NIR spectroscopy in literature. The sample was constructed to study narrow line Seyfert 1 and quasars, with a large range of line widths (800 km s−1 < FWHM < 4000 km s−1) and Fe II intensities (0.2 < R4570 < 2.8). This work presents partial results of an ongoing project that has the objective of modeling the continuum emission and emission lines in order to derive the physics driven the Eigenvector 1 through a panchromatic spectral analysis, with emphasis on strong to super-strong Fe ii emitters. Our results show that hot dust near the sublimation temperature is necessary to explain the 1μm break of the power law component of the continuum. We estimated the hot dust mass and found a weak or absent correlation with the Fe II intensity. Moreover, we found that low ionisation ions are formed in an outer region of the BLR.


2019 ◽  
Vol 28 (1) ◽  
pp. 200-212 ◽  
Author(s):  
Bozena Czerny

Abstract Broad Emission Lines are the most characteristic features of Active Galaxies, but the mechanism of creating a medium able to emit these intense lines is not quite clear. Observations clearly indicate that the motion of the material is predominantly Keplerian, with traces of inflow and clear signatures of outflow, but this still does not point out whether the lines partially come from the disk surface, or exclusively from the circumnuclear material, and whether this material originates from the disk as a wind, or comes, at least partially, from outside. I review the basic scenarios for the formation of the Broad Line Region (BLR), and the recent progress in modelling the physical conditions in he emitting medium. The current state is the outer radius of the BLR is fixed by the dust sublimation temperature in the medium exposed to the irradiation from the central source, the inner radius is likely fixed by the dust sublimation temperature in the atmosphere of the non-illuminated accretion disk, and the local cloud density is a universal number fixed by the radiation pressure confinement. The time-dependent aspects of the BLR formation, however, still wait for serious modelling effort matching the quality of the observational data.


Sign in / Sign up

Export Citation Format

Share Document