scholarly journals Keeping the Centromere under Control: A Promising Role for DNA Methylation

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 912 ◽  
Author(s):  
Scelfo ◽  
Fachinetti

In order to maintain cell and organism homeostasis, the genetic material has to be faithfully and equally inherited through cell divisions while preserving its integrity. Centromeres play an essential task in this process; they are special sites on chromosomes where kinetochores form on repetitive DNA sequences to enable accurate chromosome segregation. Recent evidence suggests that centromeric DNA sequences, and epigenetic regulation of centromeres, have important roles in centromere physiology. In particular, DNA methylation is abundant at the centromere, and aberrant DNA methylation, observed in certain tumors, has been correlated to aneuploidy and genomic instability. In this review, we evaluate past and current insights on the relationship between centromere function and the DNA methylation pattern of its underlying sequences.

Development ◽  
1984 ◽  
Vol 83 (Supplement) ◽  
pp. 31-40
Author(s):  
Adrian P. Bird

Vertebrate DNA is methylated at a high proportion of cytosine residues in the sequence CpG, and it has been suggested that the distribution of methylated and non-methylated CpGs in a given cell type influences the pattern of gene expression in those cells. Since a DNA methylation pattern is normally transmitted faithfully to daughter cells via cell division, this idea suggests an origin for stable, clonally inherited patterns of gene expression. This article discusses some of the current evidence for a relationship between DNA methylation and gene expression. Although the evidence is incomplete, it appears already that the relationship is variable: transcription of some genes is repressed by the presence of 5-methylcytosine at certain CpGs, and may be controlled by methylation, while transcription of other genes is indifferent to methylation. In attempting to explain this variability it is helpful to adopt an evolutionary perspective.


Epigenomics ◽  
2020 ◽  
Vol 12 (20) ◽  
pp. 1845-1859
Author(s):  
Faezeh Maroufi ◽  
Amirhosein Maali ◽  
Meghdad Abdollahpour-Alitappeh ◽  
Mohammad Hossein Ahmadi ◽  
Mehdi Azad

In the last 2 decades, a wide variety of studies have been conducted on epigenetics and its role in various cancers. A major mechanism of epigenetic regulation is DNA methylation, including aberrant DNA methylation variations such as hypermethylation and hypomethylation in the promoters of critical genes, which are commonly detected in tumors and mark the early stages of cancer development. Therefore, epigenetic therapy has been of special importance in the last decade for cancer treatment. In epigenetic therapy, all efforts are made to modulate gene expression to the normal status. Importantly, recent studies have shown that epigenetic therapy is focusing on the new gene editing technology, CRISPR-Cas9. This tool was found to be able to effectively modulate gene expression and alter almost any sequence in the genome of cells, resulting in events such as a change in acetylation, methylation, or histone modifications. Of note, the CRISPR-Cas9 system can be used for the treatment of cancers caused by epigenetic alterations. The CRISPR-Cas9 system has greater advantages than other available methods, including potent activity, easy design and high velocity as well as the ability to target any DNA or RNA site. In this review, we described epigenetic modulators, which can be used in the CRISPR-Cas9 system, as well as their functions in gene expression alterations that lead to cancer initiation and progression. In addition, we surveyed various species of CRISPR-dead Cas9 (dCas9) systems, a mutant version of Cas9 with no endonuclease activity. Such systems are applicable in epigenetic therapy for gene expression modulation through chemical group editing on nucleosomes and chromatin remodeling, which finally return the cell to the normal status and prevent cancer progression.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 517-517
Author(s):  
Hirotoshi Sakaguchi ◽  
Hideki Muramatsu ◽  
Xinan Wang ◽  
Yinyan Xu ◽  
Yoko Hibi ◽  
...  

Abstract Recent studies suggest that aberrant methylation plays a fundamental role in the development of a variety of cancers, including myeloid malignancies. Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloid neoplasm of early childhood that is characterized by both excessive proliferation of myelomonocytic cells and hypersensitivity to granulocyte-macrophage colony-stimulating factor. It is categorized as an overlap myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) according to the World Health Organization classification. We recently reported that somatic mutations in SETBP1 and JAK3 were identified in JMML patients and were associated with poor outcomes (Nat Genet 2013;45:937–41). The goal of this study was to clarify the clinical significance of aberrant DNA methylation in JMML. We studied 92 children (61 boys and 31 girls) who were diagnosed with JMML in institutions throughout Japan. A diagnosis of JMML was made based on internationally accepted criteria. We quantitatively evaluated the CpG methylation pattern in the promoter regions of 16 candidate genes (APC, BMP4, CALCA, CDH13, CDKN2A, CDKN2B, CHFR, DAPK, DMR-H19, ER, IGF2, MGMT, MLH1, RARB, RASSF1, TP73) from genomic DNA derived from bone marrow specimens at the time of diagnosis. This was accomplished by bisulfite conversion and the pryosequencing technique. We defined aberrant methylation as >3 standard deviations from the mean methylation level derived from 8 healthy individuals. The median age at diagnosis was 16 months (range, 0.3–160). By genetic analysis, PTPN11, NF1, NRAS, KRAS, and CBL mutations were found in 39 (42%), 7 (8%), 12 (13%), 13 (14%), and 11 (12%) patients, respectively. In addition, 16 patients had SETBP1 or JAK3 mutations. Karyotypic abnormalities were detected in 15 patients, including 8 with monosomy 7. The median monocyte count, percentage of hemoglobin F, and platelet count at the time of diagnosis were 4.6x109/L (range, 0.2–31.6), 21% (range, 0–68), and 61.0x109/L (range, 1.4–483), respectively. The median observation period was 18 months (range, 1–287). During observation, 56 of the 92 patients received allogeneic hematopoietic stem cell transplantation (HSCT), and 30 of 92 patients died. Outcomes were assessed according to transplantation-free survival (TFS), in which HSCT and death were censored, and overall survival (OS) by the Kaplan-Meier method. Aberrant methylation of BMP4, CALCA, CDKN2A, CDKN2B, DMR-H19 and RARB were detected, of which hypermethylation of BMP4, CALCA, CDKN2A, and RARB were associated with poor TFS according to univariate analyses (P<0.10). We integrated the number of aberrant methylation of these four genes to arrive at an aberrant methylation score (AMS). An AMS of 0, 1, 2, 3, and 4 was seen in 36, 29, 19, 7, and 1 of the 92 patients, respectively. The AMS was significantly higher in patients with SETBP1 or JAK3 mutations than in other patients (P=0.03): 1, 8, 3, 3, and 1 of the 16 patients showed an AMS of 0, 1, 2, 3, and 4, respectively. The probability of 5-year TFS was 42% in the AMS = 0 cohort and 4% in the AMS = 1 to 4 cohort, respectively (log-rank, P<0.001). Moreover, the probability of 5-year OS was 65% in the AMS = 0 to 2 cohort and 8% in the AMS = 3 and 4 cohort, respectively (log-rank, P=0.004). In multivariable analysis using the Cox-proportional hazard model, AMS = 1 to 4 (hazard ratio [HR], 2.6; 95% confidential interval [CI], 1.2–5.5; P=0.013), mutations of PTPN11 or NF1 (HR, 2.7; 95% CI, 1.3–5.5; P=0.010), and chromosomal aberration (HR, 3.3; 95% CI, 1.7–6.5; P=0.001) were independent predictors of poor TFS. Further, chromosomal aberration (HR, 4.4; 95% CI, 1.6–11.8; P=0.004) and platelet counts <33x109/L (HR, 2.8; 95% CI, 1.3–6.4; P=0.013) were independent predictors of poor OS. The present study shows that aberrant methylation of four genes (BMP4, CALCA, CDKN2A, and RARB) is associated with poor outcomes in JMML patients. Patients with SETBP1/JAK3 mutations frequently show the hypermethylation of these genes. Further, allogeneic HSCT is associated with improved outcomes for patients with AMS = 1 and 2. Therefore, these results suggest that examination of the methylation pattern of these four genes may help guide clinical decisions for the management of patients with JMML. Disclosures: Makishima: AA & MDS international foundation: Research Funding; Scott Hamilton CARES grant: Research Funding. Maciejewski:NIH: Research Funding; Aplastic anemia&MDS International Foundation: Research Funding.


2015 ◽  
Vol 15 (2) ◽  
pp. 112-116 ◽  
Author(s):  
Evangelia Avramidou ◽  
Aliki Kapazoglou ◽  
Filippos A. Aravanopoulos ◽  
Aliki Xanthopoulou ◽  
Ioannis Ganopoulos ◽  
...  

Grafting has been used to improve yield, fruit quality and disease resistance in a range of tree and vegetable species. The molecular mechanisms underpinning grafting responses have only recently started to be delineated. One of those mechanisms involves long distance transfer of genetic material from rootstock to scion alluding to an epigenetic component to the grafting process. In the research presented herein we extended published work on heritable changes in the DNA methylation pattern of Solanaceae scion genomes, in Cucurbitaceae inter-species grafting. Specifically, we examined global DNA methylation changes in scions of cucumber, melon and watermelon heterografted onto pumpkin rootstocks using MSAP analysis. We observed a significant increase of global DNA methylation in cucumber and melon scions pointing to an epigenetic effect in Cucurbitaceae heterografting. Exploitation of differential epigenetic marking in different rootstock-scion combinations could lead to development of epi-molecular markers for generation and selection of superior quality grafted vegetables.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Jun Chen ◽  
Hong Zhang ◽  
Fei Yang ◽  
Yu Liu ◽  
Guochun Chen

The incidence of chronic kidney disease (CKD) has rapidly increased in the past decades. A progressive loss of kidney function characterizes a part of CKD even with intensive supportive treatment. Irrespective of its etiology, CKD progression is generally accompanied with the development of chronic kidney inflammation that is pathologically featured by the low-grade but chronic activation of recruited immune cells. Cumulative evidence support that aberrant DNA methylation pattern of diverse peripheral immune cells, including T cells and monocytes, is closely associated with CKD development in many chronic disease settings. The change of DNA methylation profile can sustain for a long time and affect the future genes expression in the circulating immune cells even after they migrate from the circulation into the involved kidney. It is of clinical interest to reveal the underlying mechanism of how altered DNA methylation regulates the intensity and the time length of the inflammatory response in the recruited effector cells. We and others recently demonstrated that altered DNA methylation occurs in peripheral immune cells and profoundly contributes to CKD development in systemic chronic diseases, such as diabetes and hypertension. This review will summarize the current findings about the influence of aberrant DNA methylation on circulating immune cells and how it potentially determines the outcome of CKD.


1988 ◽  
Vol 8 (2) ◽  
pp. 754-763
Author(s):  
B Fishel ◽  
H Amstutz ◽  
M Baum ◽  
J Carbon ◽  
L Clarke

Centromeric DNA in the fission yeast Schizosaccharomyces pombe was isolated by chromosome walking and by field inversion gel electrophoretic fractionation of large genomic DNA restriction fragments. The centromere regions of the three chromosomes were contained on three SalI fragments (120 kilobases [kb], chromosome III; 90 kb, chromosome II; and 50 kb, chromosome I). Each fragment contained several repetitive DNA sequences, including repeat K (6.4 kb), repeat L (6.0 kb), and repeat B, that occurred only in the three centromere regions. On chromosome II, these repeats were organized into a 35-kb inverted repeat that included one copy of K and L in each arm of the repeat. Site-directed integration of a plasmid containing the yeast LEU2 gene into K repeats at each of the centromeres or integration of an intact K repeat into a chromosome arm had no effect on mitotic or meiotic centromere function. The centromeric repeat sequences were not transcribed and possessed many of the properties of constitutive heterochromatin. Thus, S. pombe is an excellent model system for studies on the role of repetitive sequence elements in centromere function.


2019 ◽  
Vol 18 (7) ◽  
pp. 504-515
Author(s):  
Divya Goel ◽  
Kaiser Un Nisa ◽  
Mohammad Irshad Reza ◽  
Ziaur Rahman ◽  
Shaikh Aamer

In today’s world, migraine is one of the most frequent disorders with an estimated world prevalence of 14.7% characterized by attacks of a severe headache making people enfeebled and imposing a big socioeconomic burden. The pathophysiology of a migraine is not completely understood however there are pieces of evidence that epigenetics performs a primary role in the pathophysiology of migraine. Here, in this review, we highlight current evidence for an epigenetic link with migraine in particular DNA methylation of numerous genes involved in migraine pathogenesis. Outcomes of various studies have explained the function of DNA methylation of a several migraine related genes such as RAMP1, CALCA, NOS1, ESR1, MTHFR and NR4A3 in migraine pathogenesis. Mentioned data suggested there exist a strong association of DNA methylation of migraine-related genes in migraine. Although we now have a general understanding of the role of epigenetic modifications of a numerous migraine associated genes in migraine pathogenesis, there are many areas of active research are of key relevance to medicine. Future studies into the complexities of epigenetic modifications will bring a new understanding of the mechanisms of migraine processes and open novel approaches towards therapeutic intervention.


2018 ◽  
Vol 74 (6) ◽  
pp. 5982-2018
Author(s):  
EWELINA SEMIK-GURGUL ◽  
TOMASZ ZĄBEK

Epigenetic modifications, apart from affecting gene expression, play an important role in the chromatin structure stabilization, embryonic development and the genomic imprinting. Recent studies have shown that they also play a vital role in other biological processes, including silencing of the expression and mobility of transposable elements and resistance to viral infections by blocking the expression of viral genes. The stability of the genome and the expression of genes in normal cells are strongly dependent on the DNA methylation pattern, which is visibly disturbed in tumor cells. These alterations may be a consequence of the attachment of methyl groups to cytosines in unmethylated DNA sequences, resulting in an increase in the degree of methylation or can be a result of demethylation, i.e. a reduction in the level of DNA methylation. Currently, many techniques are available to determine the level of methylcytosine in DNA, both at the level of single genes and the whole genome. However, each method has its advantages and disadvantages, not being universal in relation to the type of research material and the purpose of planned analyses..


1986 ◽  
Vol 6 (2) ◽  
pp. 530-538 ◽  
Author(s):  
J McGrew ◽  
B Diehl ◽  
M Fitzgerald-Hayes

In this paper we show that a 211-base pair segment of CEN3 DNA is sufficient to confer wild-type centromere function in the yeast Saccharomyces cerevisiae. We used site-directed mutagenesis of the 211-base pair fragment to examine the sequence-specific functional requirements of a conserved 11-base pair segment of centromere DNA, element III (5'-TGATTTATCCGAA-3'). Element III is the most highly conserved of the centromeric DNA sequences, differing by only a single adenine X thymine base pair among the four centromere DNAs sequenced thus far. All of the element III sequences contain specific cytosine X guanine base pairs, including a 5'-CCG-3' arrangement, which we targeted for single cytosine-to-thymine mutations by using sodium bisulfite. The effects of element III mutations on plasmid and chromosome segregation were determined by mitotic stability assays. Conversion of CCG to CTG completely abolished centromere function both in plasmids and in chromosome III, whereas conversion of CCG to TCG decreased plasmid and chromosome stability moderately. The other two guanine X cytosine base pairs in element III could be independently converted to adenine X thymine base pairs without affecting plasmid or chromosome stability. We concluded that while some specific nucleotides within the conserved element III sequence are essential for proper centromere function, other conserved nucleotides can be changed.


Sign in / Sign up

Export Citation Format

Share Document