scholarly journals Home Industry Powered Grid-Connected PV System an Economic Feasibility Study

Author(s):  
Kartika Sri Kumala Sari ◽  
Wati Wati ◽  
Syafii Syafii

This paper presents an analysis and feasibility of grid connected PV System for small scale home industry of welding workshop in Kambang Pesisir Selatan, Indonesia. The purpose of this paper is to analyze the feasibility of the on-grid PV system and obtain a comparison of the simulation results between the PV connected and only grid. The optimization results show that a feasible and optimal design configuration is a gid-connected PV system consisting of a Grid, PV system 3.48 kW, and a 5 kW inverter because it has a large intensity of solar radiation, which produces an economical generating system with a COE of Rp. 829/kWh, smaller than the basic cost of electricity provision that has been determined by the Ministry of Energy and Mineral Resources, which is IDR 1,058/kWh, in accordance with the criteria, the project is feasible to build.


Author(s):  
Kartika Sri Kumala Sari ◽  
Wati Wati ◽  
Syafii Syafii

This paper presents an analysis and feasibility of grid connected PV System for small scale home industry of welding workshop in Kambang Pesisir Selatan, Indonesia. The purpose of this paper is to analyze the feasibility of the on-grid PV system and obtain a comparison of the simulation results between the PV connected and only grid. The optimization results show that a feasible and optimal design configuration is a gid-connected PV system consisting of a Grid, PV system 3.48 kW, and a 5 kW inverter because it has a large intensity of solar radiation, which produces an economical generating system with a COE of Rp. 829/kWh, smaller than the basic cost of electricity provision that has been determined by the Ministry of Energy and Mineral Resources, which is IDR 1,058/kWh, in accordance with the criteria, the project is feasible to build.



Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2713
Author(s):  
Abdul Rauf ◽  
Ali T. Al-Awami ◽  
Mahmoud Kassas ◽  
Muhammad Khalid

In this paper, economic feasibility of installing small-scale solar photovoltaic (PV) system is studied at the residential and commercial buildings from an end-user perspective. Based on given scenarios, the best sizing methodology of solar PV system installation has been proposed focusing primarily on the minimum payback period under given (rooftop) area for solar PV installation by the customer. The strategy is demonstrated with the help of a case study using real-time monthly load profile data of residential as well as commercial load/customers and current market price for solar PVs and inverters. In addition, sensitivity analysis has also been carried out to examine the effectiveness of net metering scheme for fairly high participation from end users. Since Saudi Arabia’s Electricity and Co-generation Regulatory Authority (ECRA) has recently approved and published the net metering scheme for small-scale solar PV systems allowing end users to generate and export energy surplus to the utility grid, the proposed scheme has become vital and its practical significance is justified with figures and graphs obtained through computer simulations.



2021 ◽  
Vol 13 (9) ◽  
pp. 4709
Author(s):  
Ke Shi ◽  
Chuangyi Li ◽  
Choongwan Koo

Hong Kong’s government has recently introduced the feed-in tariff scheme to promote the photovoltaic (PV) system as a promising way to address global warming. The feed-in tariff scheme depends on the type of the PV system and its installed capacity. This study aimed to investigate the techno-economic feasibility of mono-Si and poly-Si PV systems in the rooftop area of a commercial building, Pao Yue-Kong Library of Hong Kong, under the feed-in tariff scheme. The analysis was carried out in two phases: (i) technical analysis of the rooftop PV systems by considering the shading effect and solar radiation and (ii) economic feasibility of the rooftop PV systems under the feed-in tariff scheme from the life cycle perspective. The main findings of the case study can be summarized: (i) the rooftop area of the target building would not be significantly affected by surrounding buildings; (ii) the highest amount of solar radiation was estimated at 136.96 kWh/m2 in October, while the lowest value was 55.64 kWh/m2 in February; (iii) the total amount of module energy yield from the mono-Si PV system was estimated at 917.58 kWh/kW, indicating that it was very similar but a little bit lower (i.e., 0.48%) than that for the poly-Si PV system (i.e., 921.98 kWh/kW); and (iv) payback periods for mono-Si and poly-Si PV systems were estimated at 8.67 and 8.31 years, respectively. The feasibility study can contribute to providing facility managers with a practical guideline to determine the appropriate strategy in implementing the PV systems in buildings under the feed-in tariff scheme.



2017 ◽  
Vol 24 (2) ◽  
pp. 489-512 ◽  
Author(s):  
Choongwan KOO ◽  
Taehoon HONG ◽  
Kwangbok JEONG ◽  
Jimin KIM

Photovoltaic (PV) system could be implemented to mitigate global warming and lack of energy. To maximize its effectiveness, the monthly average daily solar radiation (MADSR) should be accurately estimated, and then an accurate MADSR map could be developed for final decision-makers. However, there is a limitation in improving the accuracy of the MADSR map due to the lack of weather stations. This is because it is too expensive to measure the actual MADSR data using the remote sensors in all the sites where the PV system would be installed. Thus, this study aimed to develop the MADSR map with improved estimation accuracy using the advanced case-based reasoning (A-CBR), finite element method (FEM), and kriging method. This study was conducted in four steps: (i) data collection; (ii) estimation of the MADSR data in the 54 unmeasured locations using the A-CBR model; (iii) estimation of the MADSR data in the 89 unmeasured locations using the FEM model; and (iv) development of the MADSR map using the kriging method. Compared to the previous MADSR map, the proposed MADSR map was determined to be improved in terms of its estimation accuracy and classification level.



Author(s):  
Murugan Paradesi Chockalingam ◽  
Navaneethakrishnan Palanisamy ◽  
Saji Raveendran Padmavathy ◽  
Edwin Mohan ◽  
Beno Wincy Winsly ◽  
...  


Vaccines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Zoltán Kis ◽  
Cleo Kontoravdi ◽  
Robin Shattock ◽  
Nilay Shah

To overcome pandemics, such as COVID-19, vaccines are urgently needed at very high volumes. Here we assess the techno-economic feasibility of producing RNA vaccines for the demand associated with a global vaccination campaign. Production process performance is assessed for three messenger RNA (mRNA) and one self-amplifying RNA (saRNA) vaccines, all currently under clinical development, as well as for a hypothetical next-generation saRNA vaccine. The impact of key process design and operation uncertainties on the performance of the production process was assessed. The RNA vaccine drug substance (DS) production rates, volumes and costs are mostly impacted by the RNA amount per vaccine dose and to a lesser extent by the scale and titre in the production process. The resources, production scale and speed required to meet global demand vary substantially in function of the RNA amount per dose. For lower dose saRNA vaccines, global demand can be met using a production process at a scale of below 10 L bioreactor working volume. Consequently, these small-scale processes require a low amount of resources to set up and operate. RNA DS production can be faster than fill-to-finish into multidose vials; hence the latter may constitute a bottleneck.



2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.



Processes ◽  
2016 ◽  
Vol 4 (4) ◽  
pp. 54 ◽  
Author(s):  
Aikaterini Anastasopoulou ◽  
Sughosh Butala ◽  
Bhaskar Patil ◽  
John Suberu ◽  
Martin Fregene ◽  
...  


Author(s):  
Yanxia Li ◽  
Zhongliang Liu ◽  
Yan Wang ◽  
Jiaming Liu

A numerical model on methane/air combustion inside a small Swiss-roll combustor was set up to investigate the flame position of small-scale combustion. The simulation results show that the combustion flame could be maintained in the central area of the combustor only when the speed and equivalence ratio are all within a narrow and specific range. For high inlet velocity, the combustion could be sustained stably even with a very lean fuel and the flame always stayed at the first corner of reactant channel because of the strong convection heat transfer and preheating. For low inlet velocity, small amounts of fuel could combust stably in the central area of the combustor, because heat was appropriately transferred from the gas to the inlet mixture. Whereas, for the low premixed gas flow, only in certain conditions (Φ = 0.8 ~ 1.2 when ν0 = 1.0m/s, Φ = 1.0 when ν0 = 0.5m/s) the small-scale combustion could be maintained.





Sign in / Sign up

Export Citation Format

Share Document