scholarly journals Intelligent Approaches for Enhancing Networked Routing Protocol

2021 ◽  
pp. 4121-4147
Author(s):  
Ruwaida M. Yas ◽  
Sokaina Hashim

     The rapid evolution of wireless networking technologies opens the door to the evolution of the Wireless Sensor Networks (WSNs) and their applications in different fields. The WSN consists of small energy sensor nodes used in a harsh environment. The energy needed to communicate between the sensors networks can be identified as one of the major challenges. It is essential to avoid massive loss, or loss of packets, as well as rapid energy depletion and grid injustice, which lead to lower node efficiency and higher packet delivery delays. For this purpose, it was very important to track the usage of energy by nodes in order to improve general network efficiency by the use of intelligent methods to reduce the energy used to extend the life of the WSN and take successful routing decisions. For these reasons, designing an energy-efficient system that utilizes intelligent approaches is considered as the most powerful way to prolong the lifetime of the WSN. The proposed system is divided into four phases (sensor deployment phase, clustering phase, intra-cluster phase, and inter-cluster phase). Each of these phases uses a different intelligent algorithm with some enhancements. The performance of the proposed system was analyzed and evaluations were elaborated with well-known existing routing protocols. To assess the proficiency of the proposed system and evaluate the endurance of the network, efficiency parameters such as network lifetime, energy consumption, and packet delivery to the Sink (Base station) were exploited. The experimental outcomes justify that the proposed system surpasses the existing mechanisms by 50%.

2009 ◽  
Vol 5 (5) ◽  
pp. 463-479 ◽  
Author(s):  
Yoram Revah ◽  
Michael Segal

We address the problem of gathering information in sensor webs consisting of sensors nodes, wherein a round of communication sensor nodes have messages to be sent to a distant central node (called the base station) over the shortest path. There is a wide range of data gathering applications like target and hazard detection, environmental monitoring, battlefield surveillance, etc. Consequently, efficient data collection solutions are needed to improve the performance of the network. In this article, we take into account the fact that interference can occur at the reception of a message at the receiver sensor. In order to save redundant retransmissions and energy, we assume a known distribution of sources (each node wants to transmit at most one packet) and one common destination. We provide a number of scheduling algorithms jointly minimizing both the completion time and the average packet delivery time. We define our network model using directional antennas and consider Ring, Tree, and Grid Network (and its generality) topologies. All our algorithms run in low-polynomial time.


Author(s):  
Vasin Chaoboworn ◽  
Yoschanin Sasiwat ◽  
Dujdow Buranapanichkit ◽  
Hiroshi Saito ◽  
Apidet Booranawong

In this paper, the communication reliability of a 2.4 GHz multi-hop wireless sensor network (WSN) in various test scenarios is evaluated through experiments. First, we implement an autonomous communication procedure for a multi-hop WSN on Tmote sky sensor nodes; 2.4 GHz, an IEEE 802.15.4 standard. Here, all nodes including a transmitter node (Tx), forwarder nodes (Fw), and a base station node (BS) can automatically work for transmitting and receiving data. The experiments have been tested in different scenarios including: i) in a room, ii) line-of-sight (LoS) communications on the 2nd floor of a building, iii) LoS and non-line-of-sight (NLoS) communications on the 1st floor to the 2nd floor, iv) LoS and NLoS communications from outdoor to the 1st and the 2nd floors of the building. The experimental results demonstrate that the communication reliability indicated by the packet delivery ratio (PDR) can vary from 99.89% in the case of i) to 14.40% in the case of iv), respectively. Here, the experiments reveal that multi-hop wireless commutations for outdoor to indoor with different floors and NLoS largely affect the PDR results, where the PDR more decreases from the best case (i.e., the case of a)) by 85.49%. Our research methodology and findings can be useful for users and researchers to carefully consider and deploy an efficient 2.4 GHz multi-hop WSN in their works, since different WSN applications require different communication reliability level.


Sensors are regarded as significant components of electronic devices. The sensor nodes deployed with limited resources, such as the power of battery inserted in the sensor nodes. So the lifetime of wireless sensor networks(WSNs) can be increased by using the energy of the sensor nodes in an efficient way. A major part of energy is consumed during the communication of data. Also, the growing demand for usage of wireless sensors applications in different aspects makes the quality-of-service(QoS) to be one of the paramount issues in wireless sensors applications. QoS guarantee in WSNs is difficult and more challenging due to the fact that the sensors have limited resources and the various applications running over these networks have different constraints in their nature and requirements. The packet delivery ratio(PDR) is a major factor of QoS. To achieve high QoS the packet delivery ratio should be maximum. The energy-efficient unequal clustering routing protocol (EEUCR) is evaluated and results show that it enhances the packet delivery ratio(PDR) and a lifetime of WSNs. In this protocol, the area of the network is divided into a number of rings of unequal size and each ring is further divided into a number of clusters. Rings nearer to the base station(BS) have smaller area and area of rings keeps on increasing as the distance from BS increases for balanced energy consumption. The nodes with heterogeneous energy are deployed in the network. Nodes nearer to the base station have higher energy as compared to farther nodes. Static clustering is used but cluster heads(CHs) are not fixed and are elected on the basis of remaining energy. This helps to increase lifetime of EEUCR. PDR of EEUCR is improved because multiple rings help to find better route which further aids to ensure safe reception of packets at the destination. Simulation results are compared with existing protocols and show that this algorithm gives better results.


Author(s):  
Amit Grover Et al.

Wireless Sensor Networks (WSNs) comprised of battery operated sensor nodes that collect data from their neighbor nodes and transmit the aggregated information to the sink node or the Base Station (BS). This may result in congestion near the BS and leads to a bottleneck situation in the network. In this paper, an extensive study of earlier reported diverse congestion techniques explicitly diverse Algorithm based - and Layer based-congestion techniques is carried out. Accordingly, a recommendation is drawn based upon their performance comparison. Furthermore, a demonstration is carried out for contemporary earlier reported strategies such as Pro-AODV, CC-AODV, EDAPR, ED-AODV and PCC-AODV by evaluating delay, packet delivery ratio (PDR) and packet loss ratio (PLR). Accordingly, a recommended congestion strategy is suggested depending upon the comparison of the demonstrated schemes.


2021 ◽  
Vol 9 (2) ◽  
pp. 308-312
Author(s):  
A. Prasanth Rao, Et. al.

In clustering approach the sensor nodes are grouped to form a cluster. The nodes of a clustering network have low powered battery capability and limited processing capabilities. These nodes continuously exchange the data to cluster head which is in turn transforming the data to its base station. Few of these nodes in network may be faulty or may not support life time processing data due to its low power battery. All these sensor nodes measure the temperature, humidity, sound and pollution from environment and collected data is send to cloud for further processing. The fault tolerance mechanism of these nodes is solved by applying genetic algorithm by implementing chromosome technique to identify and avoid fault nodes in the network.  This proposed research work increases detection of fault nodes in a network, increase network efficiency, lifetime and reach energy optimization results in Internet of Things (IoT) concept. The performance evaluation shows that the data accuracy in Genetic Algorithm (GA) is higher when compared with Direct Diffusion (DD) Algorithm and Ad-hoc on demand Distance Vector (AODV) Algorithm.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1244
Author(s):  
Hana Rhim ◽  
Damien Sauveron ◽  
Ryma Abassi ◽  
Karim Tamine ◽  
Sihem Guemara

Wireless sensor networks (WSNs) have been widely used for applications in numerous fields. One of the main challenges is the limited energy resources when designing secure routing in such networks. Hierarchical organization of nodes in the network can make efficient use of their resources. In this case, a subset of nodes, the cluster heads (CHs), is entrusted with transmitting messages from cluster nodes to the base station (BS). However, the existence of selfish or pollution attacker nodes in the network causes data transmission failure and damages the network availability and integrity. Mainly, when critical nodes like CH nodes misbehave by refusing to forward data to the BS, by modifying data in transit or by injecting polluted data, the whole network becomes defective. This paper presents a secure protocol against selfish and pollution attacker misbehavior in clustered WSNs, known as (SSP). It aims to thwart both selfish and pollution attacker misbehaviors, the former being a form of a Denial of Service (DoS) attack. In addition, it maintains a level of confidentiality against eavesdroppers. Based on a random linear network coding (NC) technique, the protocol uses pre-loaded matrices within sensor nodes to conceive a larger number of new packets from a set of initial data packets, thus creating data redundancy. Then, it transmits them through separate paths to the BS. Furthermore, it detects misbehaving nodes among CHs and executes a punishment mechanism using a control counter. The security analysis and simulation results demonstrate that the proposed solution is not only capable of preventing and detecting DoS attacks as well as pollution attacks, but can also maintain scalable and stable routing for large networks. The protocol means 100% of messages are successfully recovered and received at the BS when the percentage of lost packets is around 20%. Moreover, when the number of misbehaving nodes executing pollution attacks reaches a certain threshold, SSP scores a reception rate of correctly reconstructed messages equal to 100%. If the SSP protocol is not applied, the rate of reception of correctly reconstructed messages is reduced by 90% at the same case.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chin-Ling Chen ◽  
Chih-Cheng Chen ◽  
De-Kui Li

In recent years, wireless sensor network (WSN) applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.


Sign in / Sign up

Export Citation Format

Share Document