scholarly journals DESIGN OF A CANARD-WING UAV

Author(s):  
VENKATA SAI BHANUDEEP GANDLA ◽  
NIRMITH KUMAR MISHRA ◽  
SAI KUMAR ALGAM ◽  
VISHAL YADAV ◽  
Lokesh Reddy Kancharla

In this project, we intend to design a Canard wing-based Unmanned Aerial Vehicle (UAV), which can carry a wide range of missions, providing capabilities to handle our challenges with sophisticated care. Canard-based UAV is the latest trend in aviation technology designed for the use case of providing better maneuverability, which in result gives the UAV new capabilities, such as increased time for data gathering, transferring, and autonomous behavior. The basic disciplines like Aerodynamics, Engineering design, Flight dynamics, Propulsion, and Performance are carried out during the UAV designing process. The proposed methodology applied in this project is weight estimation, initial sizing, aerofoil and wing geometry, fuselage sizing, tail sizing, T/W ratio, aerodynamics, and performance analysis. The design of Canard Based UAV leads to a deeper understanding of the trade-off studies of the UAV and is demonstrated by optimizing for designed missions like surveillance. A drafted sketch is presented at the end of the design phase featuring the selected configurations of major components.

2018 ◽  
Vol 285 (1882) ◽  
pp. 20180684
Author(s):  
Christian M. Gagnon ◽  
Michael E. Steiper ◽  
Herman Pontzer

There is a trade-off reflected in the contrasting phenotypes of elite long-distance runners, who are typically leaner, and elite sprinters, who are usually more heavily muscled. It is unclear, however, whether and how swimmers' bodies vary across event distances from the 50 m swim, which is about a 20–30 s event, to the 10 000 m marathon swim, which is about a 2 h event. We examined data from the 2012 Olympics to test whether swimmers’ phenotypes differed across event distances. We show that across all swimming event distances, from the 50 m sprint to the 10 000 m marathon, swimmers converge on a single optimal body mass index (BMI) in men's and women's events, in marked contrast with the strong inverse relationship between BMI and event distance found in runners. The absence of a speed–endurance trade-off in the body proportions of swimmers indicates a fundamental difference in design pressures and performance capability in terrestrial versus aquatic environments.


Author(s):  
Sergio Cavalieri ◽  
Paolo Maccarrone ◽  
Roberto Pinto

The estimation of the production cost per unit of a product during its design phase can be extremely difficult, especially if information about previous similar products is missing. On the other hand, most of the costs that will be sustained during the production activity are implicitly determined mainly in the design phase, depending on the choice of characteristics and performance of the new product. Hence, the earlier the information about costs becomes available, the better the trade-off between costs and product performances can be managed. These considerations have led to the development of different design rules and techniques, such as Design to Cost, which


2021 ◽  
pp. 1-17
Author(s):  
A. Panahi ◽  
M. A. Vaziri Zanjani ◽  
Sh. Yousefi ◽  
N. Fazli ◽  
J. Aarabi

Abstract Estimation of the structural weight of an Unmanned Combat Aerial Vehicle (UCAV) during conceptual design has proven to be a significant challenge mainly due to its unconventional configuration. We investigate development of a customised approach for structural weight estimation of UCAV based on statistical weight of the manned fighter’s components by applying minor modifications on weight formulations of fuselage, wing, empennage, power plant and landing gear. The modifications are applied by considering the corresponding differences between manned fighters and UCAVs such as manned requirements and mission variances. Some new empirical formulas for estimating the weight of UCAV’s components are proposed. Results for the empty weight estimation are validated against actual values of some well-known UCAVs. Moreover, the structural weight is validated against the benchmark UCAV case studies. The results show that the ratio of structural to takeoff weight for UCAVs is approximately between 20% to 10%. Finally, a generalised equation is developed for estimating the structural weight of UCAVs in conceptual design phase.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 213-221 ◽  
Author(s):  
Mohamed F. Hamoda ◽  
Ibrahim A. Al-Ghusain

Performance data from a pilot-plant employing the four-stage aerated submerged fixed film (ASFF) process treating domestic wastewater were analyzed to examine the organic removal rates. The process has shown high BOD removal efficiencies (> 90%) over a wide range of hydraulic loading rates (0.04 to 0.68 m3/m2·d). It could also cope with high hydraulic and organic loadings with minimal loss in efficiency due to the large amount of immobilized biomass attained. The organic (BOD and COD) removal rate was influenced by the hydraulic loadings applied, but organic removal rates of up to 104 kg BOD/ m2·d were obtained at a hydraulic loading rate of 0.68 m3/m2·d. A Semi-empirical model for the bio-oxidation of organics in the ASFF process has been formulated and rate constants were calculated based on statistical analysis of pilot-plant data. The relationships obtained are very useful for analyzing the design and performance of the ASFF process and a variety of attached growth processes.


2021 ◽  
Vol 18 (2) ◽  
pp. 1-24
Author(s):  
Nhut-Minh Ho ◽  
Himeshi De silva ◽  
Weng-Fai Wong

This article presents GRAM (<underline>G</underline>PU-based <underline>R</underline>untime <underline>A</underline>daption for <underline>M</underline>ixed-precision) a framework for the effective use of mixed precision arithmetic for CUDA programs. Our method provides a fine-grain tradeoff between output error and performance. It can create many variants that satisfy different accuracy requirements by assigning different groups of threads to different precision levels adaptively at runtime . To widen the range of applications that can benefit from its approximation, GRAM comes with an optional half-precision approximate math library. Using GRAM, we can trade off precision for any performance improvement of up to 540%, depending on the application and accuracy requirement.


2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


2021 ◽  
Vol 34 (5) ◽  
pp. 303-318
Author(s):  
Maarten Baele ◽  
An Vermeulen ◽  
Dimitri Adons ◽  
Roos Peeters ◽  
Angelique Vandemoortele ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327 ◽  
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Natural, semi-natural, and planted forests are a key asset worldwide, providing a broad range of positive externalities. For sustainable forest planning and management, remote sensing (RS) platforms are rapidly going mainstream. In a framework where scientific production is growing exponentially, a systematic analysis of unmanned aerial vehicle (UAV)-based forestry research papers is of paramount importance to understand trends, overlaps and gaps. The present review is organized into two parts (Part I and Part II). Part II inspects specific technical issues regarding the application of UAV-RS in forestry, together with the pros and cons of different UAV solutions and activities where additional effort is needed, such as the technology transfer. Part I systematically analyzes and discusses general aspects of applying UAV in natural, semi-natural and artificial forestry ecosystems in the recent peer-reviewed literature (2018–mid-2020). The specific goals are threefold: (i) create a carefully selected bibliographic dataset that other researchers can draw on for their scientific works; (ii) analyze general and recent trends in RS forest monitoring (iii) reveal gaps in the general research framework where an additional activity is needed. Through double-step filtering of research items found in the Web of Science search engine, the study gathers and analyzes a comprehensive dataset (226 articles). Papers have been categorized into six main topics, and the relevant information has been subsequently extracted. The strong points emerging from this study concern the wide range of topics in the forestry sector and in particular the retrieval of tree inventory parameters often through Digital Aerial Photogrammetry (DAP), RGB sensors, and machine learning techniques. Nevertheless, challenges still exist regarding the promotion of UAV-RS in specific parts of the world, mostly in the tropical and equatorial forests. Much additional research is required for the full exploitation of hyperspectral sensors and for planning long-term monitoring.


2020 ◽  
Vol 6 (3) ◽  
pp. 522-525
Author(s):  
Dorina Hasselbeck ◽  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Peter P. Pott

AbstractMicroscopy enables fast and effective diagnostics. However, in resource-limited regions microscopy is not accessible to everyone. Smartphone-based low-cost microscopes could be a powerful tool for diagnostic and educational purposes. In this paper, the imaging quality of a smartphone-based microscope with four different optical parameters is presented and a systematic overview of the resulting diagnostic applications is given. With the chosen configuration, aiming for a reasonable trade-off, an average resolution of 1.23 μm and a field of view of 1.12 mm2 was achieved. This enables a wide range of diagnostic applications such as the diagnosis of Malaria and other parasitic diseases.


Sign in / Sign up

Export Citation Format

Share Document