The Principle of Recording Information in Distributed Environments via Suleimenov-Mun's Waves

2014 ◽  
Vol 875-877 ◽  
pp. 642-646 ◽  
Author(s):  
Miras Dolayev ◽  
Sergey Panchenko ◽  
Rinat Bakytbekov ◽  
Roman Ivlyev

A new approach to information recording in distributed media based on the forced wave excitation involved by temperature fluctuations was proposed. The scheme of the device providing the implementation of the proposed approach is considered.

1998 ◽  
Vol 84 (6) ◽  
pp. 2190-2197 ◽  
Author(s):  
Frank Grund ◽  
Hilchen T. Sommerschild ◽  
Knut A. Kirkebøen ◽  
Arnfinn Ilebekk

To prevent unphysiological temperature fluctuations in the myocardium in the open-chest model, we constructed a thermocage. Five pigs under pentobarbital sodium anesthesia underwent repetitive left anterior descending (LAD) coronary artery occlusions. Myocardial temperature was measured without any thoracic temperature-controlling device and in the presence of either a heating lamp or the thermocage. Without any thoracic temperature-controlling device, the temperature at 5-mm myocardial depth was 1.28 ± 0.33°C below the intra-abdominal temperature ( P < 0.05). During a proximal 5-min LAD occlusion, myocardial temperature decreased by 1.86 ± 1.02°C in the ischemic area ( P < 0.05). Both the heating lamp and the thermocage abolished the difference between intra-abdominal and myocardial temperatures and prevented the decrease in myocardial temperature during ischemia. Only the thermocage minimized myocardial temperature fluctuations due to air currents and prevented epicardial exsiccation. We conclude that either a thermocage or a heating lamp may be used to normalize myocardial temperature in the open-chest pig model. However, the thermocage is superior to the lamp in minimizing temperature fluctuations and preventing epicardial exsiccation.


Author(s):  
D. M. Feiner ◽  
J. H. Griffin ◽  
K. W. Jones ◽  
J. A. Kenyon ◽  
O. Mehmed ◽  
...  

A new approach to modal analysis is presented that allows the modes and natural frequencies of a mistuned bladed disk to be determined from its response to a traveling wave excitation. The resulting modes and natural frequencies are then used as input to a system identification method to determine the bladed disk’s mistuning while it is rotating. This capability is useful since it provides a basis for determining blade frequencies under engine operational conditions and could help monitor the health of the engine.


2020 ◽  
Vol 22 ◽  
pp. 100781 ◽  
Author(s):  
Sarwo Edhy Sofyan ◽  
Eric Hu ◽  
Andrei Kotousov ◽  
Teuku Meurah Indra Riayatsyah ◽  
Khairil ◽  
...  

2016 ◽  
Vol 60 ◽  
pp. 206-216 ◽  
Author(s):  
Yoosoon Chang ◽  
Chang Sik Kim ◽  
J. Isaac Miller ◽  
Joon Y. Park ◽  
Sungkeun Park

1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Author(s):  
Arthur V. Jones

With the introduction of field-emission sources and “immersion-type” objective lenses, the resolution obtainable with modern scanning electron microscopes is approaching that obtainable in STEM and TEM-but only with specific types of specimens. Bulk specimens still suffer from the restrictions imposed by internal scattering and the need to be conducting. Advances in coating techniques have largely overcome these problems but for a sizeable body of specimens, the restrictions imposed by coating are unacceptable.For such specimens, low voltage operation, with its low beam penetration and freedom from charging artifacts, is the method of choice.Unfortunately the technical dificulties in producing an electron beam sufficiently small and of sufficient intensity are considerably greater at low beam energies — so much so that a radical reevaluation of convential design concepts is needed.The probe diameter is usually given by


1968 ◽  
Vol 32 (3) ◽  
pp. 279-282
Author(s):  
JI Mock ◽  
JW Grenfell ◽  
WA Richter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document