scholarly journals Inositol hexaphosphate modulates the behavior of macrophages through alteration of gene expression involved in pathways of pro‐ and anti‐inflammatory responses, and resolution of inflammation pathways

2021 ◽  
Author(s):  
Yinshen Wee ◽  
Chieh‐Hsiang Yang ◽  
Shau‐Kwaun Chen ◽  
Yu‐Chun Yen ◽  
Ching‐Shuen Wang
2021 ◽  
Vol 22 (6) ◽  
pp. 3022
Author(s):  
Tatjana Ullmann ◽  
Sonja Luckhardt ◽  
Markus Wolf ◽  
Michael J. Parnham ◽  
Eduard Resch

This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Nikunj Satani ◽  
Kaavya Giridhar ◽  
Natalia Wewior ◽  
Dominique D Norris ◽  
Scott D Olson ◽  
...  

Background: Inflammatory responses after stroke consists of central and peripheral immune responses. The role of the spleen after stroke is well-known, however the role of the lungs has not been studied in detail. We explored the relation between stroke severity and immunomodulatory changes in lung endothelial cells. Methods: Human pulmonary endothelial cells (hPECs, Cell Biologics) were cultured at passage 3. Serum from stroke patients with NIH Stroke Scale (NIHSS) severity ranging from 0 to 20 was collected at 24 hours after stroke. hPECs were exposed to media with 1) 10% FBS alone (N=6), 2) 10% serum from stroke patients (N=72), or 3) 10% serum from stroke mimic patients (N=6). After 3 hour of exposure, fresh media was added and secretomes from hPECs were measured after 24 hours. We isolated RNA from hPECs after 3 hour of serum exposure and measured gene expression (N=6 for each group). Secretome and gene changes in hPECs were analyzed based on stroke severity, tPA treatment, and co-morbidities. Results: Serum from stroke patients reduced the secretion of IL-8, MCP-1 and Fractalkine (p<0.01), and increased the secretion of VEGF and BDNF (p<0.01) from hPECs. These effects were more pronounced depending on stroke severity (Fig). There was no effect of tPA or T2DM on hPECs secretomes. There was significantly reduced gene expression of IL-6, IL-8, MCP-1 and IL-1β and significantly higher expression of ICAM1, IGF-1 and TGF-β1 as compared to stroke mimics. Conclusion: Exposure of hPECs to serum from stroke patients alters their immunomodulatory properties. Higher severity of stroke leads to more protective response from hPECs by reducing the secretion of pro-inflammatory factors, while increasing the secretion of anti-inflammatory factors.


Author(s):  
Ryan G. Snodgrass ◽  
Yvonne Benatzy ◽  
Tobias Schmid ◽  
Dmitry Namgaladze ◽  
Malwina Mainka ◽  
...  

Abstract Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 624 ◽  
Author(s):  
Nuna Araújo ◽  
Carla S. B. Viegas ◽  
Eva Zubía ◽  
Joana Magalhães ◽  
Acácio Ramos ◽  
...  

Osteoarthritis (OA) remains a prevalent chronic disease without effective prevention and treatment. Amentadione (YP), a meroditerpenoid purified from the alga Cystoseira usneoides, has demonstrated anti-inflammatory activity. Here, we investigated the YP anti-osteoarthritic potential, by using a novel OA preclinical drug development pipeline designed to evaluate the anti-inflammatory and anti-mineralizing activities of potential OA-protective compounds. The workflow was based on in vitro primary cell cultures followed by human cartilage explants assays and a new OA co-culture model, combining cartilage explants with synoviocytes under interleukin-1β (IL-1β) or hydroxyapatite (HAP) stimulation. A combination of gene expression analysis and measurement of inflammatory mediators showed that the proposed model mimicked early disease stages, while YP counteracted inflammatory responses by downregulation of COX-2 and IL-6, improved cartilage homeostasis by downregulation of MMP3 and the chondrocytes hypertrophic differentiation factors Col10 and Runx2. Importantly, YP downregulated NF-κB gene expression and decreased phosphorylated IkBα/total IkBα ratio in chondrocytes. These results indicate the co-culture as a relevant pre-clinical OA model, and strongly suggest YP as a cartilage protective factor by inhibiting inflammatory, mineralizing, catabolic and differentiation processes during OA development, through inhibition of NF-κB signaling pathways, with high therapeutic potential.


2004 ◽  
Vol 17 (2) ◽  
pp. 201-214 ◽  
Author(s):  
Jonathan Z. Pan ◽  
Rebecka Jörnsten ◽  
Ronald P. Hart

Inflammatory responses contribute to secondary tissue damage following spinal cord injury (SCI). A potent anti-inflammatory glucocorticoid, methylprednisolone (MP), is the only currently accepted therapy for acute SCI but its efficacy has been questioned. To search for additional anti-inflammatory compounds, we combined microarray analysis with an explanted spinal cord slice culture injury model. We compared gene expression profiles after treatment with MP, acetaminophen, indomethacin, NS398, and combined cytokine inhibitors (IL-1ra and soluble TNFR). Multiple gene filtering methods and statistical clustering analyses were applied to the multi-dimensional data set and results were compared. Our analysis showed a consistent and unique gene expression profile associated with NS398, the selective cyclooxygenase-2 (COX-2) inhibitor, in which the overall effect of these upregulated genes could be interpreted as neuroprotective. In vivo testing demonstrated that NS398 reduced lesion volumes, unlike MP or acetaminophen, consistent with a predicted physiological effect in spinal cord. Combining explanted spinal cultures, microarrays, and flexible clustering algorithms allows us to accelerate selection of compounds for in vivo testing.


2012 ◽  
Vol 215 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Karolina Bäck ◽  
Rakibul Islam ◽  
Git S Johansson ◽  
Simona I Chisalita ◽  
Hans J Arnqvist

Diabetes is associated with microcirculatory dysfunction and heart failure and changes in insulin and IGF1 levels. Whether human cardiac microvascular endothelial cells (HMVEC-Cs) are sensitive to insulin and/or IGF1 is not known. We studied the role of insulin receptors (IRs) and IGF1 receptors (IGF1Rs) in metabolic, mitogenic and anti-inflammatory responses to insulin and IGF1 in HMVEC-Cs and human umbilical vein endothelial cells (HUVECs). IR and IGF1R gene expression was studied using real-time RT-PCR. Receptor protein expression and phosphorylation were determined by western blot and ELISA. Metabolic and mitogenic effects were measured as glucose accumulation and thymidine incorporation. An E-selectin ELISA was used to investigate inflammatory responses. According to gene expression and protein in HMVEC-Cs and HUVECs, IGF1R is more abundant than IR. Immunoprecipitation with anti-IGF1R antibody and immunoblotting with anti-IR antibody and vice versa, showed insulin/IGF1 hybrid receptors in HMVEC-Cs. IGF1 at a concentration of 10−8 mol/l significantly stimulated phosphorylation of both IGF1R and IR in HMVEC-Cs. In HUVECs IGF1 10−8 mol/l phosphorylated IGF1R. IGF1 stimulated DNA synthesis at 10−8 mol/l and glucose accumulation at 10−7 mol/l in HMVEC-Cs. TNF-α dramatically increased E-selectin expression, but no inflammatory or anti-inflammatory effects of insulin, IGF1 or high glucose were seen. We conclude that HMVEC-Cs express more IGF1Rs than IRs, and mainly react to IGF1 due to the predominance of IGF1Rs and insulin/IGF1 hybrid receptors. TNF-α has a pronounced pro-inflammatory effect in HMVEC-Cs, which is not counteracted by insulin or IGF1.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Geeta Datta ◽  
David K Crossman ◽  
Lesley E Smythies ◽  
M N Palgunachari ◽  
Manjula Chaddha ◽  
...  

The apolipoprotein A-I (apoA-I) mimetic peptide 4F displays prominent anti-inflammatory properties, including the ability to reduce vascular macrophage content. Macrophages are a heterogenous group of cells that are represented by two principal phenotypes, the classically-activated M1 macrophage and an alternatively-activated M2 phenotype. We previously reported that apoA-I and 4F favor the differentiation of human monocytes to an anti-inflammatory phenotype similar to that displayed by M2 macrophages. Further, 4F treatment attenuated LPS-induced inflammatory responses in monocyte-derived macrophages (MDMs). In the current study, we investigated effects of 4F and vehicle on LPS-induced gene expression in human MDMs by microarray analysis. RNA isolation, labeling and hybridization were performed, and the transcriptional profile was examined using the Human Gene ST 1.0 Affymetrix chip. Analysis of MDM gene expression profiles revealed that 4F modulated mRNA expression for 1099 genes (± 2-fold change, p<0.05), of which 149 genes regulated inflammatory responses. LPS treatment of MDMs significantly up-regulated genes encoding Toll-like receptors (TLR1, 2, 4, 6, and 8) compared to vehicle treatment. These responses were attenuated by 4F treatment. MyD88, CD14, IRAK4, TRAF6, TRAF3, MALT1 and IKBKB, genes that modulate NF-κB activation and subsequent cytokine synthesis, were also reduced by 4F. Corroborating this, FACS analyses showed that pre-treatment of MDMs with 4F reduced the LPS-dependent phosphorylation of NF-κB by 70% compared to vehicle treatment. These 4F-induced responses were also associated with a reduction in TNF-α and IL-6 secretion. These data suggest that an important anti-inflammatory mechanism of 4F action may be to down-regulate genes involved in the TLR signaling pathway, thus attenuating the responsiveness of macrophages to LPS and other pathogen-associated molecular patterns (PAMPs).


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Daniel Hirsch ◽  
Faith E. Archer ◽  
Meera Joshi-Kale ◽  
Anna M. Vetrano ◽  
Barry Weinberger

Neutrophil activity is prolonged in newborns, suggesting decreased exposure and/or responses to immunosuppressive modulators, such as 1,25-hydroxyvitamin D3(1,25-vit D3). We hypothesized that 1,25-vit D3suppresses neutrophil activation and that this response is impaired in newborns. Consistent with this, 1,25-vit D3decreased LPS-induced expression of macrophage inflammatory protein-1βand VEGF in adult, but not neonatal, neutrophils. Expression of vitamin D receptor (VDR) and 25-hydroxyvitamin D3-1α-hydroxylase was reduced in neonatal, relative to adult neutrophils. Moreover, 1,25-vit D3induced VDR gene expression in activated adult, but not neonatal, neutrophils. 1,25-vit D3also suppressed expression of cyclooxygenase-2 and induced expression of 5-lipoxygenase in LPS-exposed adult neutrophils, while neonatal cells were not affected. 1,25-vit D3had no effect on respiratory burst in either adult or neonatal cells. Anti-inflammatory activity of vitamin D is impaired in neonatal neutrophils, and this may be due to decreased expression of VDR and 1α-hydroxylase. Insensitivity to 1,25-vit D3may contribute to chronic inflammation in neonates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isaac J. Morrison ◽  
Jianan Zhang ◽  
Jingwen Lin ◽  
JeAnn E. Murray ◽  
Roy Porter ◽  
...  

AbstractColorectal cancer (CRC) represents the third leading cause of death among cancer patients below the age of 50, necessitating improved treatment and prevention initiatives. A crude methanol extract from the wood pulp of Artocarpus heterophyllus was found to be the most bioactive among multiple others, and an enriched extract containing 84% (w/v) artocarpin (determined by HPLC–MS–DAD) was prepared. The enriched extract irreversibly inhibited the activity of human cytochrome P450 CYP2C9, an enzyme previously shown to be overexpressed in CRC models. In vitro evaluations on heterologously expressed microsomes, revealed irreversible inhibitory kinetics with an IC50 value of 0.46 µg/mL. Time- and concentration-dependent cytotoxicity was observed on human cancerous HCT116 cells with an IC50 value of 4.23 mg/L in 72 h. We then employed the azoxymethane (AOM)/dextran sodium sulfate (DSS) colitis-induced model in C57BL/6 mice, which revealed that the enriched extract suppressed tumor multiplicity, reduced the protein expression of proliferating cell nuclear antigen, and attenuated the gene expression of proinflammatory cytokines (Il-6 and Ifn-γ) and protumorigenic markers (Pcna, Axin2, Vegf, and Myc). The extract significantly (p = 0.03) attenuated (threefold) the gene expression of murine Cyp2c37, an enzyme homologous to the human CYP2C9 enzyme. These promising chemopreventive, cytotoxic, anticancer and anti-inflammatory responses, combined with an absence of toxicity, validate further evaluation of A. heterophyllus extract as a therapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document