scholarly journals An interacting molecular cloud scenario for production of gamma-rays and neutrinos from MAGIC J1835-069, and MAGIC J1837-073

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Prabir Banik ◽  
Arunava Bhadra

AbstractRecently the MAGIC telescope observed three TeV gamma-ray extended sources in the galactic plane in the neighborhood of radio SNR G24.7+0.6. Among them, the PWN HESS J1837-069 was detected earlier by the HESS observatory during its first galactic plane survey. The other two sources, MAGIC J1835-069 and MAGIC J1837-073 are detected for the first time at such high energies. Here we shall show that the observed gamma-rays from the SNR G24.7+0.6 and the HESS J1837-069 can be explained in terms of hadronic interactions of the PWN/SNR accelerated cosmic rays with the ambient matter. We shall further demonstrate that the observed gamma-rays from the MAGIC J1837-073 can be interpreted through hadronic interactions of runaway cosmic-rays from PWN HESS J1837-069 with the molecular cloud at the location of MAGIC J1837-073. No such association has been found between MAGIC J1835-069 and SNR G24.7+0.6 or PWN HESS J1837-069. We have examined the maximum energy attainable by cosmic-ray particles in the SNR G24.7+0.6/ PWN HESS J1837-069 and the possibility of their detection with future gamma-ray telescopes. The study of TeV neutrino emissions from the stated sources suggests that the HESS J1837-069 should be detected by IceCube Gen-2 neutrino telescope in a few years of observation.

Author(s):  
F. J. Voisin ◽  
G. P. Rowell ◽  
M. G. Burton ◽  
Y. Fukui ◽  
H. Sano ◽  
...  

AbstractWe investigate the interstellar medium towards seven TeV gamma-ray sources thought to be pulsar wind nebulae using Mopra molecular line observations at 7 mm [CS(1–0), SiO(1–0, v = 0)], Nanten CO(1–0) data and the Southern Galactic Plane Survey/GASS Hisurvey. We have discovered several dense molecular clouds co-located to these TeV gamma-ray sources, which allows us to search for cosmic rays coming from progenitor SNRs or, potentially, from pulsar wind nebulae. We notably found SiO(1–0, v = 0) emission towards HESS J1809–193, highlighting possible interaction between the adjacent supernova remnant SNR G011.0–0.0 and the molecular cloud atd∼ 3.7 kpc. Using morphological features, and comparative studies of our column densities with those obtained from X-ray measurements, we claim a distanced∼ 8.6 − 9.7kpc for SNR G292.2–00.5,d∼ 3.5 − 5.6 kpc for PSR J1418–6058 andd∼ 1.5 kpc for the new SNR candidate found towards HESS J1303–631. From our mass and density estimates of selected molecular clouds, we discuss signatures of hadronic/leptonic components from pulsar wind nebulae and their progenitor SNRs. Interestingly, the molecular gas, which overlaps HESS J1026–582 atd∼ 5 kpc, may support a hadronic origin. We find however that this scenario requires an undetected cosmic-ray accelerator to be located atd< 10 pc from the molecular cloud. For HESS J1809–193, the cosmic rays which have escaped SNR G011.0–0.0 could contribute to the TeV gamma-ray emission. Finally, from the hypothesis that at most 20% the pulsar spin down power could be converted into CRs, we find that among the studied pulsar wind nebulae, only those from PSR J1809–1917 could potentially contribute to the TeV emission.


2020 ◽  
Vol 492 (3) ◽  
pp. 4246-4253 ◽  
Author(s):  
Yan Huang ◽  
Zhuo Li ◽  
Wei Wang ◽  
Xiaohong Zhao

ABSTRACT The synchrotron radiation from secondary electrons and positrons (SEPs) generated by hadronic interactions in the shock of supernova remnant (SNR) could be a distinct evidence of cosmic ray (CR) production in SNR shocks. Here, we provide a method where the observed gamma-ray flux from SNRs, created by pion decays, is directly used to derive the SEP distribution and hence the synchrotron spectrum. We apply the method to three gamma-ray bright SNRs. In the young SNR RX J1713.7−3946, if the observed GeV−TeV gamma-rays are of hadronic origin and the magnetic field in the SNR shock is B ≳ 0.5 mG, the SEPs may produce a spectral bump at 10−5–10−2 eV, exceeding the predicted synchrotron component of the leptonic model, and a soft spectral tail at ≳100 keV, distinct from the hard spectral slope in the leptonic model. In the middle-aged SNRs IC443 and W44, if the observed gamma-rays are of hadronic origin, the SEP synchrotron radiation with B ∼ 400–500 μG can well account for the observed radio flux and spectral slopes, supporting the hadronic origin of gamma-rays. Future microwave to far-infrared and hard X-ray (&gt;100keV) observations are encouraged to constraining the SEP radiation and the gamma-ray origin in SNRs.


2019 ◽  
Vol 207 ◽  
pp. 02007
Author(s):  
Christoph Raab ◽  
Juan Antonio Aguilar Sánchez

Blazars have long been considered as accelerator candidates for cosmic rays. In such a scenario, hadronic interactions in the jet would produce neutrinos and gamma rays. Correlating the astrophysical neutrinos detected by IceCube with the gamma-ray emission from blazars could therefore help elucidate the origin of cosmic rays. In our method we focus on periods where blazars show an enhanced gamma-ray flux, as measured by Fermi-LAT, thereby reducing the background of the search. We present results for TXS 0506+056, using nearly 10 years of IceCube data and discuss them in the context of other recent analyses on this source. In addition, we give an outlook on applying this method in a stacked search for the combined emission from a selection of variable Fermi blazars.


2015 ◽  
Vol 2 ◽  
pp. 57-62 ◽  
Author(s):  
M. Kroll ◽  
J. Becker Tjus ◽  
B. Eichmann ◽  
N. Nierstenhöfer

Abstract. It is generally believed that the cosmic ray spectrum below the knee is of Galactic origin, although the exact sources making up the entire cosmic ray energy budget are still unknown. Including effects of magnetic amplification, Supernova Remnants (SNR) could be capable of accelerating cosmic rays up to a few PeV and they represent the only source class with a sufficient non-thermal energy budget to explain the cosmic ray spectrum up to the knee. Now, gamma-ray measurements of SNRs for the first time allow to derive the cosmic ray spectrum at the source, giving us a first idea of the concrete, possible individual contributions to the total cosmic ray spectrum. In this contribution, we use these features as input parameters for propagating cosmic rays from its origin to Earth using GALPROP in order to investigate if these supernova remnants reproduce the cosmic ray spectrum and if supernova remnants in general can be responsible for the observed energy budget.


2020 ◽  
Vol 500 (1) ◽  
pp. 1087-1094
Author(s):  
Prabir Banik ◽  
Arunava Bhadra ◽  
Abhijit Bhattacharyya

ABSTRACT The nearest active radio galaxy Centaurus (Cen) A is a gamma-ray emitter in GeV–TeV energy scale. The high energy stereoscopic system (HESS) and non-simultaneous Fermi–Large Area Telescope observation indicate an unusual spectral hardening above few GeV energies in the gamma-ray spectrum of Cen A. Very recently the HESS observatory resolved the kilo parsec (kpc)-scale jets in Centaurus A at TeV energies. On the other hand, the Pierre Auger Observatory (PAO) detects a few ultrahigh energy cosmic ray (UHECR) events from Cen-A. The proton blazar inspired model, which considers acceleration of both electrons and hadronic cosmic rays in active galactic nuclei (AGN) jet, can explain the observed coincident high-energy neutrinos and gamma-rays from Ice-cube detected AGN jets. Here, we have employed the proton blazar inspired model to explain the observed GeV–TeV gamma-ray spectrum features including the spectrum hardening at GeV energies along with the PAO observation on cosmic rays from Cen-A. Our findings suggest that the model can explain consistently the observed electromagnetic spectrum in combination with the appropriate number of UHECRs from Cen A.


1989 ◽  
Vol 8 (2) ◽  
pp. 159-160 ◽  
Author(s):  
D. J. Bird ◽  
R. W. Clay ◽  
P. G. Edwards

AbstractThe extreme isotropy of cosmic ray events allows one to put upper limits on any possible non-isotropic contribution to the flux. In particular, one can investigate any excess of events which may be confined to the galactic plane. Such extra events would be expected from galactic ultra-high-energy (UHE) gamma-ray sources. Under the assumption of an isotropic cosmic ray flux, recent Buckland Park data place a 95% confidence level limit on the total southern hemisphere (declination −15° to −55°) flux of UHE gamma-rays at between 0.6 and 6 equivalent Cygnus X-3 sources, depending on assumptions concerning the gamma-ray spectrum.


2009 ◽  
Vol 18 (10) ◽  
pp. 1627-1631 ◽  
Author(s):  
◽  
WILFRIED DOMAINKO ◽  
DALIBOR NEDBAL ◽  
JAMES A. HINTON ◽  
OLIVIER MARTINEAU-HUYNH

Clusters of galaxies are believed to contain a significant population of cosmic rays. From the radio and probably hard X-ray bands it is known that clusters are the spatially most extended emitters of non-thermal radiation in the Universe. Due to their content of cosmic rays, galaxy clusters are also potential sources of VHE (> 100 GeV) gamma rays. Recently, the massive, nearby cluster Abell 85 has been observed with the H.E.S.S. experiment in VHE gamma rays with a very deep exposure as part of an ongoing campaign. No significant gamma-ray signal has been found at the position of the cluster. The non-detection of this object with H.E.S.S. constrains the total energy of cosmic rays in this system. For a hard spectral index of the cosmic rays of -2.1 and if the cosmic-ray energy density follows the large scale gas density profile, the limit on the fraction of energy in these non-thermal particles with respect to the total thermal energy of the intra-cluster medium is 8% for this particular cluster. This value is at the lower bounds of model predictions.


2019 ◽  
Vol 65 (5 Sept-Oct) ◽  
pp. 545
Author(s):  
E. Ortiz ◽  
J. F. Valdés-Galicia ◽  
A. Hurtado ◽  
R. García ◽  
M. Anzorena ◽  
...  

The mini-SciCR is a cosmic ray detector, it is made of scintillator bars with a total volume of 20 x 20 x 20.8 $cm^{3}$. The array of scintillator bars act both as a target and as a tracker of the incident radiation. In this paper we describe the method developed with the help of a Monte Carlo simulation to distiguish the neutron signals from gamma ray signals, it is based on the different maximum energy deposited at a scintillator bar by neutrons and gamma rays. To distiguish the neutral emission signals (neutrons and gamma rays) from charged particles signals, we implemented via software a system of anti-coincidence between edge bars and internal bars of the detector. We also report the flux of neutrons and gamma rays measured by the mini-SciCR at the top of the Sierra Negra volcano at 4,600 m.a.s.l., in Eastern Mexico. The mini-SciCR was operating from October 2010 to July 2012. We also present the Forbush decrease registered by the mini-SciCR on march, 2012. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope installed in the same place, which is in the process of operation parameter tuning and calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012001
Author(s):  
R Monkhoev ◽  
M Ternovoy ◽  
I Astapov ◽  
P Bezyazeekov ◽  
A Borodin ◽  
...  

Abstract The Tunka-Grande array is part of a single experimental complex, which also includes the Tunka-133 and TAIGA-HiScORE (High Sensitivity COsmic Rays and gamma Explorer) wide-angle Cherenkov arrays, TAIGA-IACT array (Imaging Atmospheric Cherenkov Telescope) and TAGA-MUON scintillation array. This complex is located in the Tunka Valley (Buryatia Republic, Russia), 50 km from Lake Baikal. It is designed to study the energy spectrum and the mass composition of charged cosmic rays in the energy range 100 TeV - 1000 PeV, to search for diffuse gamma rays above 100 TeV and to study local sources of gamma rays with energies above 30 TeV. This report outlines 3 key points. The first is the description of the Tunka-Grande scintillation array. The second one presents the computer simulation strategy of the Tunka Grande array based on the Geant4 software. The third one is devoted to the prospects for future research in the field of cosmic ray physics and gamma-ray astronomy using simulation results.


2013 ◽  
Vol 28 (02) ◽  
pp. 1340001 ◽  
Author(s):  
ALEXANDER KUSENKO

Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed flux of ultrahigh-energy cosmic-rays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.


Sign in / Sign up

Export Citation Format

Share Document