scholarly journals Effects of Plant Crown Shape on Microwave Backscattering Coefficients of Vegetation Canopy

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7748
Author(s):  
Xiangchen Liu ◽  
Yun Shao ◽  
Long Liu ◽  
Kun Li ◽  
Jingyuan Wang ◽  
...  

A microwave scattering model is a powerful tool for determining relationships between vegetation parameters and backscattering characteristics. The crown shape of the vegetation canopy is an important parameter in forestry and affects the microwave scattering modeling results. However, there are few numerical models or methods to describe the relationships between crown shapes and backscattering features. Using the Modified Tor Vergata Model (MTVM), a microwave scattering model based on the Matrix Doubling Algorithm (MDA), we quantitatively characterized the effects of crown shape on the microwave backscattering coefficients of the vegetation canopy. FEKO was also used as a computational electromagnetic method to make a complement and comparison with MTVM. In a preliminary experiment, the backscattering coefficients of two ideal vegetation canopies with four representative crown shapes (cylinder, cone, inverted cone and ellipsoid) were simulated: MTVM simulations were performed for the L (1.2 GHz), C (5.3 GHz) and X (9.6 GHz) bands in fully polarimetric mode, and FEKO simulations were carried out for the C (5.3 GHz) band at VV and VH polarization. The simulation results show that, for specific input parameters, the mean relative differences in backscattering coefficients due to variations in crown shape are as high as 127%, which demonstrates that the crown shape has a non-negligible influence on microwave backscattering coefficients of the vegetation canopy. In turn, this also suggests that investigation on effects of plant crown shape on microwave backscattering coefficients may have the potential to improve the accuracy of vegetation microwave scattering models, especially in canopies where volume scattering is the predominant mechanism.

Author(s):  
P B Parejiya ◽  
B S Barot ◽  
P K Shelat

The present study was carried out to fabricate a prolonged design for tramadol using Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer). Matrix tablet formulations were prepared by direct compression of Kollidon SR of a varying proportion with a fixed percentage of tramadol. Tablets containing a 1:0.5 (Drug: Kollidon SR) ratio exhibited a rapid rate of drug release with an initial burst effect. Incorporation of more Kollidon SR in the matrix tablet extended the release of drug with subsequent minimization of the burst effect as confirmed by the mean dissolution time, dissolution efficiency and f2 value. Among the formulation batches, a direct relationship was obtained between release rate and the percentage of Kollidon SR used. The formulation showed close resemblance to the commercial product Contramal and compliance with USP specification. The results were explored and explained by the difference of micromeritic characteristics of the polymers and blend of drug with excipients. Insignificant effects of various factors, e.g. pH of dissolution media, ionic strength, speed of paddle were found on the drug release from Kollidon-SR matrix. The formulation followed the Higuchi kinetic model of drug release. Stability study data indicated stable character of Batch T6 after short-term stability study.


1999 ◽  
Vol 15 (2) ◽  
pp. 57-68
Author(s):  
Huang Hsing Pan

ABSTRACTBased on the weight function theory and Hutchinson's technique, the analytic form of the toughness change near a crack-tip is derived. The inhomogeneity toughening is treated as an average quantity calculated from the mean-field approach. The solutions are suitable for the composite materials with moderate concentration as compared with Hutchinson's lowest order formula. The composite has the more toughened property if the matrix owns the higher value of the Poisson ratio. The composite with thin-disc inclusions obtains the highest toughening and that with spheres always provides the least effective one. For the microcrack toughening, the variations of the crack shape do not significantly affect the toughness change if the Budiansky and O'Connell crack density parameter is used. The explicit forms for three types of the void toughening and two types of the microcrack toughening are also shown.


Author(s):  
Armando Félix Quiñonez ◽  
Guillermo E Morales Espejel

This work investigates the transient effects of a single subsurface inclusion over the pressure, film thickness, and von Mises stress in a line elastohydrodynamic lubrication contact. Results are obtained with a fully-coupled finite element model for either a stiff or a soft inclusion moving at the speed of the surface. Two cases analyzed consider the inclusion moving either at the same speed as the mean velocity of the lubricant or moving slower. Two additional cases investigate reducing either the size of the inclusion or its stiffness differential with respect to the matrix. It is shown that the well-known two-wave elastohydrodynamic lubrication mechanism induced by surface features is also applicable to the inclusions. Also, that the effects of the inclusion become weaker both when its size is reduced and when its stiffness approaches that of the matrix. A direct comparison with predictions by the semi-analytical model of Morales-Espejel et al. ( Proc IMechE, Part J: J Engineering Tribology 2017; 231) shows reasonable qualitative agreement. Quantitatively some differences are observed which, after accounting for the semi-analytical model's simplicity, physical agreement, and computational efficiency, may then be considered as reasonable for engineering applications.


2011 ◽  
Vol 139 (5) ◽  
pp. 1389-1409 ◽  
Author(s):  
Juerg Schmidli ◽  
Brian Billings ◽  
Fotini K. Chow ◽  
Stephan F. J. de Wekker ◽  
James Doyle ◽  
...  

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.


1989 ◽  
Vol 157 ◽  
Author(s):  
E. Johnson ◽  
L. Gråbaek ◽  
J. Bohr ◽  
A. Johansen ◽  
L. Sarholt-Kristensen ◽  
...  

ABSTRACTIon implantation at room temperature of lead into aluminium leads to spontaneous phase separation and formation of lead precipitates growing topotactically with the matrix. Unlike the highly pressurised (∼ 1–5 GPa) solid inclusions formed after noble gas implantations, the pressure in the lead precipitates is found to be less than 0.12 GPa.Recently we have observed the intriguing result that the lead inclusions in aluminium exhibit both superheating and supercooling [1]. In this paper we review and elaborate on these results. Small implantation-induced lead precipitates embedded in an aluminium matrix were studied by X-ray diffraction. The (111) Bragg peak originating from the lead crystals was followed during several temperature cycles, from room temperature to 678 K. The melting temperature for bulk lead is 601 K. In the first heating cycle we found a superheating of the lead precipitates of 67 K before melting occurred. During subsequent cooling a supercooling of 21 K below the solidification point of bulk lead was observed. In the subsequent heating cycles this hysteresis at the melting transition was reproducible. The full width of the hysteresis loop slowly decreased to 62 K, while the mean size of the inclusions gradually increased from 14.5 nm to 27 nm. The phenomena of superheating and supercooling are thus most pronounced for the small crystallites. The persistence of the hysteresis loop over successive heating cycles demonstrate that its cause is intrinsic in nature, and it is believed that the superheating originates from the lack of free surfaces of the lead inclusions.


2015 ◽  
Vol 12 (5) ◽  
pp. 988-992 ◽  
Author(s):  
Long Liu ◽  
Kun Li ◽  
Yun Shao ◽  
Nicolas Pinel ◽  
Zhi Yang ◽  
...  

2011 ◽  
Vol 68 (1) ◽  
pp. 139-154 ◽  
Author(s):  
Rolando R. Garcia ◽  
William J. Randel ◽  
Douglas E. Kinnison

Abstract Trace chemical species have been used in numerical models to calculate the age of air (AOA), which is a measure of the strength of the mean meridional circulation. The trend in the AOA has also been computed and found to be negative in simulations where greenhouse gases increase with time, which is consistent with the acceleration of the mean meridional circulation calculated under these conditions. This modeling result has been tested recently using observations of SF6, a very long lived species whose atmospheric concentration has increased rapidly over the last half century, and of CO2, which is also very long lived and increasing with time. Surprisingly, the AOA estimated from these gases exhibits no significant trend over the period 1975–2005. Here the Whole Atmosphere Community Climate Model (WACCM) is used to derive estimates of the AOA from SF6 and CO2 over the period 1965–2006. The calculated AOA yields trends that are smaller than the trend derived from a synthetic, linearly growing tracer, even after accounting for the nonlinear growth rates of SF6 and CO2. A simplified global transport model and analytical arguments are used to show that this follows from the variable growth rate of these species. It is also shown that, when AOA is sampled sparsely as in the observations, the resulting trends have very large error bars and are statistically undistinguishable from zero. These results suggest that trends in the AOA are difficult to estimate unambiguously except for well-sampled tracers that increase linearly and uniformly. While such tracers can be defined in numerical models, there are no naturally occurring species that exhibit such idealized behavior.


2012 ◽  
Vol 18 (5) ◽  
pp. 1129-1134 ◽  
Author(s):  
Sophie Cazottes ◽  
François Vurpillot ◽  
Abdeslem Fnidiki ◽  
Dany Lemarchand ◽  
Marcello Baricco ◽  
...  

AbstractThe microstructure of Cu80Fe10Ni10 (at. %) granular ribbons was investigated by means of three-dimensional field ion microscopy (3D FIM). This ribbon is composed of magnetic precipitates embedded in a nonmagnetic matrix. The magnetic precipitates have a diameter smaller than 5 nm in the as-spun state and are coherent with the matrix. No accurate characterization of such a microstructure has been performed so far. A tomographic characterization of the microstructure of melt spun and annealed Cu80Fe10Ni10 ribbon was achieved with 3D FIM at the atomic scale. A precise determination of the size distribution, number density, and distance between the precipitates was carried out. The mean diameter for the precipitates is 4 nm in the as-spun state. After 2 h at 350°C, there is an increase of the size of the precipitates, while after 2 h at 400°C the mean diameter of the precipitates decreases. Those data were used as inputs in models that describe the magnetic and magnetoresistive properties of this alloy.


Sign in / Sign up

Export Citation Format

Share Document