scholarly journals New Hydrogel Network Based on Alginate and a Spiroacetal Copolymer

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 241
Author(s):  
Alina Elena Sandu ◽  
Loredana Elena Nita ◽  
Aurica P. Chiriac ◽  
Nita Tudorachi ◽  
Alina Gabriela Rusu ◽  
...  

This study reports a strategy for developing a biohybrid complex based on a natural/synthetic polymer conjugate as a gel-type structure. Coupling synthetic polymers with natural compounds represents an important approach to generating gels with superior properties and with potential for biomedical applications. The study presents the preparation of hybrid gels with tunable characteristics by using a spiroacetal polymer and alginate as co-partners in different ratios. The new network formation was tested, and the structure was confirmed by FTIR and SEM techniques. The physical properties of the new gels, namely their thermal stability and swelling behavior, were investigated. The study showed that the increase in alginate content caused a smooth increase in thermal stability due to the additional crosslinking bridges that appeared. Moreover, increasing the content of the synthetic polymer in the structure of the gel network ensures a slower release of carvacrol, the encapsulated bioactive compound.

2020 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Kenji Tsukigawa ◽  
Shuhei Imoto ◽  
Keishi Yamasaki ◽  
Koji Nishi ◽  
Toshihiko Tsutsumi ◽  
...  

In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected adverse effects. Human serum albumin (HSA), which has a high biocompatibility and good biodegradability, is also a potent carrier for delivering antitumor drugs. The objective of this study was to develop pH-sensitive HSA conjugates of THP (HSA-THP), and investigate the release of THP and the cytotoxicity under acidic conditions in vitro for further clinical development. HSA-THP was synthesized by conjugating maleimide hydrazone derivatives of THP with poly-thiolated HSA using 2-iminothiolane, via a thiol-maleimide coupling reaction. We synthesized two types of HSA-THP that contained different amounts of THP (HSA-THP2 and HSA-THP4). Free THP was released from both of the HSA conjugates more rapidly at an acidic pH, and the rates of release for HSA-THP2 and HSA-THP4 were similar. Moreover, both HSA-THPs exhibited a higher cytotoxicity at acidic pH than at neutral pH, which is consistent with the effective liberation of free THP under acidic conditions. These findings suggest that these types of HSA-THPs are promising candidates for further development.


2020 ◽  
Vol 52 (8) ◽  
pp. 923-930 ◽  
Author(s):  
Hanae Arakawa ◽  
Kumi Takeda ◽  
Sayuri L. Higashi ◽  
Aya Shibata ◽  
Yoshiaki Kitamura ◽  
...  

AbstractVarious biofunctional hydrogel materials can be fabricated in aqueous media through the self-assembly of peptide derivatives, forming supramolecular nanostructures and their three-dimensional networks. In this study, we describe the self-assembly of new Fmoc-dipeptides comprising α-methyl-L-phenylalanine. We found that the position and number of methyl groups introduced onto the α carbons of the Fmoc-dipeptides by α-methyl-L-phenylalanine have a marked influence on the morphology of the supramolecular nanostructure as well as the hydrogel (network) formation ability.


2005 ◽  
Vol 58 (10) ◽  
pp. 704 ◽  
Author(s):  
Yanping Karen Wang ◽  
Thomas Yong ◽  
Seeram Ramakrishna

Synthetic polymer and biopolymer nanofibres can be fabricated through self-assembly, phase separation, electrospinning, and mechanical methods. These novel functional biocompatible polymers are very promising for a variety of future biomedical applications. There are many characteristics of nanofibres that would potentially influence cell growth and proliferation. As such, many studies have been carried out to elucidate the cell–nanofibre interaction with the purpose of optimizing the matrix for cell growth and tissue regeneration. In this Review, we present current literatures and our research on the interactions between cells and nanofibres, and the potentials of nanofibre scaffolds for biomedical applications.


2006 ◽  
Vol 89 (8) ◽  
pp. 083106 ◽  
Author(s):  
J. Y. Xiong ◽  
X. Y. Liu ◽  
J. L. Li ◽  
J. Narayanan ◽  
R. Y. Wang

2017 ◽  
Author(s):  
Guillaume Dupuis ◽  
Sebastien Antignard ◽  
Bruno Giovannetti ◽  
Nicolas Gaillard ◽  
Stephane Jouenne ◽  
...  

2011 ◽  
Vol 36 (8) ◽  
pp. 981-1014 ◽  
Author(s):  
M. Dash ◽  
F. Chiellini ◽  
R.M. Ottenbrite ◽  
E. Chiellini

Author(s):  
David Jarvis ◽  
Angela Edwards ◽  
Narayan Bhattarai

Keratin, a natural biomaterial found within the hair, nails, and epidermis of humans, has shown promise of being a useful material for tissue engineering scaffolds and drug delivery systems, due in part to its favorable biological qualities. The scaffolds generated by electrospinning are useful in proliferating cells, and can even biodegrade over time, reducing the impact on the body and not invoking any adverse tissue response. This research details the extraction process of keratin from human hair, and using electrospinning to weave the keratin into nanofibrous polymers. Using a synthetic polymer solution, for example, polycaprolactone (PCL) in trifluoroethanol (TFE), keratin was easily mixed and successfully electrospun into nanofibers. The fiber formation characteristics and nanofiber morphology was studied under a scanning electron microscope (SEM).


2021 ◽  
Vol 4 ◽  
Author(s):  
Khakhanang Wijarnprecha ◽  
Auke de Vries ◽  
Sopark Sonwai ◽  
Dérick Rousseau

The development of water-in-oleogel (W/Og) emulsions is highlighted, with focus placed on the key properties dictating the structuring ability of both the continuous oleogelled and dispersed phases present. The gelling ability of oleogelators is distinguished by the formation of crystalline structures, polymeric strands, or tubules. Once a dispersed aqueous phase is introduced, droplet stabilization may occur via oleogelator adsorption onto the surface of the dispersed droplets, the formation of a continuous gel network, or a combination of both. Surface-active species (added or endogenous) are also required for effective W/Og aqueous phase dispersion and stabilization. Processing conditions, namely temperature-time-shear regimes, are also discussed given their important role on dispersed droplet and oleogel network formation. The effects of many factors on W/Og emulsion formation, rheology, and stability remain virtually unknown, particularly the role of dispersed droplet size, gelation, and clustering as well as the applicability of the active filler concept to foods. This review explores some of these factors and briefly mentions possible applications of W/Og emulsions.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 521
Author(s):  
Daniela G. Arakaki ◽  
Vanessa Samúdio dos Santos ◽  
Elaine Pádua de Melo ◽  
Hugo Pereira ◽  
Priscila Silva Figueiredo ◽  
...  

Fruits and byproducts are valuable sources of nutrients and bioactive compounds, which are associated with a decreased risk of developing several diseases, such as cancer, inflammation, cardiovascular diseases, and Alzheimer’s. The fruits of canjiqueira (Byrsonima cydoniifolia) are already exploited as a food resource, while the seeds are discarded. This study aimed at showing the potential of the whole fruit of canjiqueira. Elemental characterization was performed on ICP OES, while thermal stability was assessed on thermogravimetry. The determination of the fatty acid profile was carried out on gas chromatography and bioactive compound identification using liquid chromatography and mass spectrometry. Results show that both parts of canjiqueira fruit are a source of various minerals, such as Ca, Cu, Fe, K, Mg, and Mn while the seed only is a good source for Zn. Oleic and linoleic acids are the main compounds in pulp and seed. The thermal stability of seed oil is superior to pulp oil, while piceatannol concentration is higher in seed than pulp. All parts of canjiqueira fruit may be used as a strategy to address nutrition issues and are valuable ingredients to prospective food products.


2012 ◽  
Vol 706-709 ◽  
pp. 595-599 ◽  
Author(s):  
Alina Sionkowska

Collagen-based materials were prepared and their properties were studied. The shape of collagen materials was as follows: thin films, hydrogels, and sponges. Microstructure and mechanical properties of films and sponges were studied. The effect of cross-linking agents and the effect of synthetic polymer on the properties of collagen materials were studied and analyzed. Collagen-based materials can be considered as potential biomaterials in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document