Development of Membrane Filter for Water Treatment Using Anionic and Cationic Cellulose Nanofibers

Author(s):  
Hae-Min Jo ◽  
Yeon-Hui Lee ◽  
Do-Hoon Kim ◽  
Soo-Hyun Lee ◽  
Ji-Young Lee
2017 ◽  
Vol 18 (3) ◽  
pp. 968-975
Author(s):  
R. G. Silva ◽  
J. Szabo ◽  
V. Namboodiri ◽  
E. R. Krishnan ◽  
J. Rodriguez ◽  
...  

Abstract Development of greener water treatment technologies is important for the production of safe drinking water and water security applications, such as decontamination. Chlorine assisted disinfection is common and economical, but can generate disinfection byproducts (DBPs) that may be of health concern. DBPs are formed due to the reaction of chlorine with naturally occurring organic and inorganic substances in water. Currently, various innovative technologies are being developed as alternative approaches for preventing DBPs during water treatment. In this study, we evaluated the effectiveness of a novel combination of high efficiency flow filtration and UV disinfection treatment system for the removal of Bacillus globigii (B. globigii) spores in water. The filtration system consists of a charged membrane filter (CMF) that not only helps to remove suspended particles but also reduces the impact of other impurities including bio organisms. In order to get most performance details, the CMF was evaluated at clean, half-life, and end of life (EOL) conditions along with 100% UV transmittance (UVT). In addition, the effectiveness of the UV system was evaluated as a stand alone system at 100% and 70% EOL intensity. The study was conducted at the US EPA's Test and Evaluation (T&E) Facility in Cincinnati, OH, using B. globigii, a surrogate for B. anthracis spores. This non-chemical environmentally-friendly CMF/UV combination system and the stand alone UV unit showed greater than 6.0 log removal of B. globigii during the tests.


2017 ◽  
Vol 41 (21) ◽  
pp. 12746-12755 ◽  
Author(s):  
Sreerag Gopi ◽  
Preetha Balakrishnan ◽  
Chandradhara Divya ◽  
Srecko Valic ◽  
Emi Govorcin Bajsic ◽  
...  

We report the fabrication and application of multi-functional hybrid bio-aerogels based on cellulose nanofibers (CNFs) and chitin nanocrystals (CNCs).


TAPPI Journal ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 17-23
Author(s):  
KEVIN TAYLOR ◽  
RICH ADDERLY ◽  
GAVIN BAXTER

Over time, performance of tubular backpulse pressure filters in kraft mills deteriorates, even with regular acid washing. Unscheduled filter replacement due to filter plugging results in significant costs and may result in mill downtime. We identified acid-insoluble filter-plugging materials by scanning electron microscope/energy-dispersion X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis in both polypropylene and Gore-Tex™ membrane filter socks. The major filter-plugging components were calcium sulfate (gypsum), calcium phosphate (hydroxylapatite), aluminosilicate clays, metal sulfides, and carbon. We carried out detailed sample analysis of both the standard acid-washing procedure and a modified procedure. Filter plugging by gypsum and metal sulfides appeared to occur because of the acid-washing procedure. Gypsum formation on the filter resulted from significant hydrolysis of sulfamic acid solution at temperatures greater than 130°F. Modification of the acid-washing procedure greatly reduced the amount of gypsum and addition of a surfactant to the acid reduced wash time and mobilized some of the carbon from the filter. With surfactant, acid washing was 95% complete after 40 min.


2020 ◽  
Vol 0 (2) ◽  
pp. 21-25
Author(s):  
Nikolay Dubenok ◽  
Andrey Novikov ◽  
Sergei Borodychev ◽  
Maria Lamskova

At the stage of water treatment for irrigation systems, the efficiency capture coarse and fine mechanical impurities, as well as oil products and organic compounds affects the reliability of the equipment of the irrigation network and the safety of energy exchange processes in irrigated agricultural landscapes. The violation of work irrigation system can cause disruptions in irrigation schedules of agricultural crops, crop shortages, degradation phenomena on the soil and ecological tension. For the combined irrigation system, a water treatment unit has been developed, representing a hydrocyclone apparatus with a pipe filter in the case. For the capacity of 250 m3/h the main geometrical dimensions of hydrocyclone have been calculated. To organize the capture petroleum products and organic compounds, it has been proposed a modernization of a hydrocyclone unit, consisting in dividing the cylindrical part of the apparatus into two section. The first is section is for input irrigation water, the second one is for additional drainage of clarified irrigation water after sorption purification by the filter, placed on the disk and installed coaxially with the drain pipe and the pipe filter.


Waterlines ◽  
2007 ◽  
Vol 26 (1) ◽  
pp. 17-19 ◽  
Author(s):  
Caetano Dorea
Keyword(s):  

Waterlines ◽  
2012 ◽  
Vol 31 (1-2) ◽  
pp. 53-66 ◽  
Author(s):  
Richard Luff ◽  
Caetano Dorea

2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

Sign in / Sign up

Export Citation Format

Share Document