alkaline component
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 0)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 580
Author(s):  
Jiaming Wu ◽  
Tianyu Lei ◽  
Beibei Wang ◽  
Shuwei Ma ◽  
Yulong Lin ◽  
...  

The alkaline components in red mud represent one of the crucial factors restricting its application, especially for the construction and building industry. The phase state of alkaline components has a significant influence on the dealkalization of red mud. In this work, an environmentally friendly acid leaching strategy is proposed by controlling the phase transformation of red mud during active roasting pretreatment. With a moderate roasting temperature, the alkaline component is prevented from converting into insoluble phases. After acid leaching with a low concentration of 0.1 M, a high dealkalization rate of 92.8% is obtained. Besides, the leachate is neutral (pH = 7) and the valuable metals in red mud are well preserved, manifesting a high selectivity and efficiency of diluted acid leaching. The calcination experiment further confirms the practicability of the strategy in the construction field, where the cementitious minerals can be formed in large quantities. Compared with the traditional acid leaching routes, the diluted acid leaching strategy in this work is acid saving with low valuable element consumption. Meanwhile, the secondary pollution issue can be alleviated. Hence, the findings in this work provide a feasible approach for the separation and recovery of alkali and resource utilization of red mud.


2021 ◽  
Vol 6 (1(62)) ◽  
pp. 36-42
Author(s):  
Oleksandr Kovalchuk ◽  
Viktoriia Zozulynets

The object of the research is the process of directed structure formation in the body of alkaline concrete, made using a reactive aggregate, in this case, basalt, and the process of deformation development in such concrete. The problem with using reactive aggregates is that they cause alkaline corrosion. It manifests itself in the form of cracks and layers of gel-like substances that form at the point of contact of the aggregate with the cement stone. During the research, methods of physical and chemical analysis were used (X-ray phase, differential thermal and thermogravimetric analyzes, electron microscopy, infrared spectroscopy, microprobe analysis). And also methods of mathematical planning of experiments have been used for the dependence of the physical and technical properties of cements and the directions of their structure formation. Also, the research has been carried out based on the analysis of world achievements in solving the problem of alkaline corrosion of concrete. The possibility of joint operation of the matrix of alkaline cements and active aggregates, represented by basalt, has been determined. The component composition of alkaline cement has been optimized and the need to increase the amount of the alkaline component in the system for the normal course of structure formation processes has been proved. The study of the influence of technical factors and conditions of hardening on the development of processes of structure formation of the investigated compositions has been carried out. The deformation properties of fine-grained concrete based on slag-alkaline cement and basalt aggregate have been investigated. It is shown that the expansion deformations of the samples, which accompany the process of alkaline corrosion of the aggregate in concrete, are directly related to the component composition and hardening conditions of the material. The obtained research results confirm the possibility of using active aggregates for the manufacture of building materials, in particular, based on alkaline cements. But for the safe course of the processes of structure formation, the component composition of the system has to be adjusted by introducing an active mineral additive and an additional alkaline component. The use of hydrophobizing additives makes it possible to increase the strength of the material even when operating under normal heat and humidity conditions.


Author(s):  
O.Yu. Kovalchuk ◽  
◽  
V.V. Zozulynets ◽  

Abstract. Results of study of deformative properties of fine-grain concrete are shown using slag alkali activated cement and active aggregate, represented by fraction 0-2.5 mm. It had been shown that expansion deformations of concrete specimens, supplying process of alkaline corrosion of aggregate in concrete, directly combined with component composition and conditions of hardening and storing of material. Thus, it was show, that using alkaline component in the state of dry salt (sodium carbonate) shrinkage/expansion deformations are varying in the shorter ranges comparing to alkali activated concrete with the alkaline component represented by soluble glass. Introduction of active mineral admixture represented by metakaolin also leads to the decreasing of deformations comparing to the compositions without such admixture. Different conditions of hardening and storing of the specimens are also influence well on the development of shrinkage deformations. It is shown that drying of specimens with active process of alkaline corrosion of concrete makes it possible to stop development of expansion deformations in concrete. Hydrophobization of the dried specimens make it possible to store for some time linear characteristics of concrete specimens. This opens the possibility to store lifeability and exploitation terms of construction with destructive corrosion processes in concrete without spending significant costs and without canceling of construction exploitation. Hydrophobization of specimens without drying leads to the intensification of structure formation processes and higher rates of development of shrinkage/expansion deformations. That means, that traditional method of protection of concrete constructions (covering of concrete constructions by painting materials) is not able to prevent, but also possible to activate development of destructive processes of alkaline corrosion of concrete, becoming dangerous to be used.


2021 ◽  
Vol 25 (5) ◽  
pp. 32-38
Author(s):  
V.P. Melnikov ◽  
K.S. Ivanov ◽  
A.A. Melnikova ◽  
Z.B. Dashinimaev

In the studies, the extrusion method of synthesis of foam-glass ceramic was used, which contributed to the intensification of the silicate formation process and a decrease in the consumption of the alkaline component by 1.8 times. It was found that samples of granulated foam-glass ceramic with a fraction of 5–20 mm have the required compressive strength and effective thermal conductivity, which allow their use in the construction of transport infrastructure in permafrost conditions. Considering the colossal length of the Arctic zone of Russia, the perspective of the proposed approach is the possibility of creating mobile complexes for the production of heat-insulating material near the construction of highways.


2021 ◽  
Author(s):  
Pavel Krivenko ◽  
Volodymyr Kyrychok

The chapter deals with a genesis of structure and properties of the zeolite-like cement matrices of the Na(K)-Al2O3-SiO2-H2O system within a temperature range of 20–1200°С. Due to the fact that zeolite-like structures and their characteristics vary within wide ranges, materials with high-performance properties can be obtained through regulation of the structure formation processes. This can be provided by a proper choice of type of an aluminosilicate component, cation of an alkaline component and additives, including Ca-containing ones, and curing conditions. When the cement matrix formation process is appropriately directed, the zeolite-like products (hydrosodalite, analcime, chabasite, faujasite etc.) dominate in the microstructure that is formed. The ability of some zeolites to recrystallize with temperature increase into stable feldspar-like aluminosilicates without destroying the basic skeleton opens a pathway that is worth to explore in the production of materials similar to low temperature ceramics, intumescent coatings, high temperature and corrosion resistant structures, etc. The examples are given on how to use the above cement matrices for making some of the above listed materials.


2021 ◽  
Vol 11 (7) ◽  
pp. 2985
Author(s):  
Saverio Latorrata ◽  
Riccardo Balzarotti ◽  
Maria Isabella Adami ◽  
Bianca Marino ◽  
Silvia Mostoni ◽  
...  

Currently, slags from secondary steel production, foundries, and blast furnaces represent a major environmental problem since they end up mainly in landfills, and their valorization would bring undeniable advantages both to environment and economy. Moreover, the removal of heavy metal ions from mines wastewater is one of the challenges of the last decades, and adsorption has been proposed as one of the most promising techniques for this purpose. In this context, the use of alkali-activated slags as sorbent can be a good opportunity to develop low cost, environmentally friendly, and sustainable materials. Accordingly, wastewater decontamination by adsorption over a porous monolithic bed made of alkali-activated hydraulic binders is proposed. Alkali-activated materials were prepared using slags from the metallurgical industry and reacted with an alkaline component (high alumina calcium aluminate cement, CAC 80) at ambient conditions. The obtained monolithic foams were tested to evaluate the uptake efficiency towards metal capture. Solutions containing Cu(II), Fe(III), Ni(II), Mn(II), and simulating the metal concentrations of a real mine effluent were tested, both in single- and multi-ion solutions. Promising capture efficiency, values of 80–100% and of 98–100% in the case of the single ion and of the multi-ion solutions were obtained, respectively.


2021 ◽  
Vol 280 ◽  
pp. 07001
Author(s):  
Oleksandr Kovalchuk ◽  
Victoriya Zozulynets

The paper discusses the questions of alkalinity changes in alkali activated cement-based materials at different stages of hardening. It was shown that use of alkali activated cement with dry alkaline component (“all-in-one system”) in the presence of basalt rock leads to the immediate decrease of pH value and strength drop of the material. On the other hand, using alkaline component in the form of alkaline solution provides almost normal hardening of systems. Taking into account obtained results a methodology of changes in concrete mix design was proposed. In general, for different cement systems under study pH value varies from 8.5 to 12 reflecting on the materials structure formation processes and strength gain. Shrinkage of the systems was within the ranges 0.3…0.6 mm/m at 28 days age and 0.3…0.5 mm/m for different systems. Absence of expansion witnesses about compensation of ASR results and normal structure developments processes in the material comparing to OPC.


Author(s):  
Н. Сарсенбаев ◽  
N. Sarsenbaev ◽  
А. Аласханов ◽  
A. Alashanov ◽  
А. Айменов ◽  
...  

The article presents the outcomes of analysis and synthesis of Russian and Kazakh researches on the issue of the use of industrial waste industry for the production of composite slag base binders and concretes. Utilization, liquidation of industrial wastes and their use in the production of composite alkali-activated slag are the issues of global and national importance. Therefore, industrial and developed countries pay great attention to this issue. The influence of the production wastes of the enrichment of polymetallic ores – carbonate-barium tailings on the performance properties (strength, water absorption, density, etc.) of composite alkali-activated slag and concretes is studied. The ways of introducing modifying additives “waste of carbonate-barium tailings” into the composition of alkali-activated slag and concretes are investigated. The optimal amount of introduction the waste of carbonate-barium tailings into the composition of alkali-activated slag of modifying additives is determined. It is 10% of the binder mass and an indicator of effectiveness in influencing the activity of concrete, depending on the type of alkaline component and the hardening conditions. The methods of testing the experimental work to determine the operational properties of alkali-activated slag and concretes based on them are presented.


2018 ◽  
Vol 230 ◽  
pp. 03016 ◽  
Author(s):  
Raisa Runova ◽  
Volodymyr Gots ◽  
Igor Rudenko ◽  
Oleksandr Konstantynovskyi ◽  
Oles’ Lastivka

Functionality of mortar and concrete mixes is regulated by surfactants, which act as plasticizers. The molecular structure of these admixtures can be changed during hydration of alkali-activated cements (AAC). The objective was to determine the chemical nature of plasticizers effective for property modification of mortars and concretes based on AACs with changing content of granulated blast furnace slag from 0 to 100 %. The admixtures without ester links become more effective than polyesters when content of alkaline component increase. The admixtures effective in high alkaline medium were used in dry mixes for anchoring (consistency of mortar 150 mm by Vicat cone; 1 d tensile strength in bending / compressive strength of mortar 6.6 /30.6 MPa) and in ready-mixed concretes (consistency class changed from S1 to S3, S4 with consistency safety during 60 min; 3 d compressive strength of modified concrete was not less than the reference one without admixtures).


2018 ◽  
Vol 230 ◽  
pp. 03018 ◽  
Author(s):  
Yuliya Savchuk ◽  
Andrii Plugin ◽  
Vitalii Lyuty ◽  
Oleksii Pluhin ◽  
Olga Borziak

The influence of the alkaline component on the physico-mechanical properties and the structure of the clinkerless waterproof composition on the basis of Kryvyi Rih blast furnace slag and an alkaline component – sodium hydroxide – have been investigated. High and very high correlation between the compressive strength f of the composition and the alkali – sodium hydroxide – strength A/S has been established. The dependence f on A/S has an extreme wave-like pattern with maxima at A/S = 1.5% and 15-20%, which is explained by the formation of one and two series of hydration products between slag particles similarly to Portland cement-based compositions. It has been established that the hydration products of the composition are predominantly gel-like one, such as hydrosilicate gel and zeolite-like sodium calcium hydroalumosilicates; fewer crystalline hydration products include prismatic and needle-like crystals of complex salts of aluminate phases. The pore size in the composition structure mostly does not exceed 2 microns, although single pores up to 10 microns in size also occur.


Sign in / Sign up

Export Citation Format

Share Document