scholarly journals Influence of near-fault characteristics on inelastic response of multi-storey building with intensity measurement analysis

2021 ◽  
Vol 73 (11) ◽  
pp. 1081-1092

This study is presented to achieve three objectives: (1) to compare between the inelastic responses of buildings under near and far fault excitations, (2) to investigate the effect of the pulse to structural period ratio, and (3) to evaluate a set of intensity measurements (IMs) in terms of near fault (NF) earthquakes. A real reinforced concrete building with 35 storeys is analysed in the scope of the first and second objectives, whereas the third objective involves three general-frame buildings consisting of 6, 13, and 20 storeys. Results show that the NF excitation can drive the building to exceed its life safety performance level. Furthermore, the accuracy of the IM highly depends on the vibration period of the building and the function used to calculate the IM.

2006 ◽  
Vol 22 (1) ◽  
pp. 85-113 ◽  
Author(s):  
Oscar A. López ◽  
Julio J. Hernández ◽  
Ricardo Bonilla ◽  
Aura Fernández

This paper aims to investigate the response spectra characteristics of the principal components of seismic motion, which are required for accurate multicomponent structural analysis. Mean spectra were determined for the three principal uncorrelated acceleration components for an ensemble of 97 earthquake records. The average inclination of the quasi-vertical component from the vertical axis is found to be 11.4°, with a standard deviation of 9.9°. The ratio of the minor and the major quasi-horizontal spectra varies between 0.63 and 0.81, which are lower than the value of 1 commonly used in design codes. Greater differences are found for near-fault motions in the intermediate-period range. The ratio of the quasi-vertical and the major quasi-horizontal spectra varies between 0.34 and 0.69 for far-fault and between 0.3 and 1.33 for near-fault motions, depending on vibration period. Smoothed spectra of the three principal components that can be used in modern multicomponent structural analysis methods are presented.


2019 ◽  
Vol 97 ◽  
pp. 04022
Author(s):  
Nikolay Trekin ◽  
Emil Kodysh ◽  
Alexander Bybka ◽  
Alexander Yamalov ◽  
Nikita Konkov

The article provides an analysis and justification of the need to take into account the compliance of discs of overlapping and coatings when calculating frames from precast concrete structures. Previously conducted full-scale experiments showed that the rigidity of the precast overlapping with full filling of the seams, in comparison with the monolithic overlapping, decreases by 3-15 times due to the ductility of the joints. The use of refined computational models of structural solutions for frames, which take into account the compliance of the conjugations of elements, makes it possible to trace possible redistribution of efforts. Such an approach when reconstructing, it is possible to optimally select and calculate the enforcement of structure, and on new designing, to increase reliability and / or improve the economic performance of frame buildings. According to the results of analytical studies, formulas were adopted for the parameters that allow one to take into account the overall compliance of overlapping disks and coatings in computational models of building frames. Numerical studies on the computational model of a frame building made it possible to evaluate the effect of accounting for compliance on the stress-strain state of a multi-storey frame.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


2011 ◽  
Vol 90-93 ◽  
pp. 940-945
Author(s):  
Wen Jun Gao ◽  
Guang Wu Tang ◽  
Yi Da Kong

A typical reinforced concrete rib arch bridge was chosen to investigate its nonlinear response to near-fault ground motions recorded in 2008 Wenchuan earthquake. Results showed that significant seismic damage may occur, maximum demands were higher for near-fault records having forward directive than far-fault motions, and the rotational capacity of rib plastic hinge is not enough for the large compression force of arch rib. While backward-directivity motions, typically do not exhibit pulse-type motions, only have medium seismic damage to the arch bridge.


2017 ◽  
Vol 21 (5) ◽  
pp. 675-693 ◽  
Author(s):  
Aruna Rawat ◽  
Naseef Ummer ◽  
Vasant Matsagar

Rolling base isolation system provides effective isolation to the structures from seismic base excitations by virtue of its low frictional resistance. Herein, dynamic analysis of flexible-shear type multi-storey building mounted on orthogonally placed elliptical rolling rod base isolation systems subjected to bi-directional components of near-fault earthquake ground motions is presented. The orthogonally placed rods would make it possible to resist the earthquake forces induced in the structure in both the horizontal directions. The curved surface of these elliptical rods has a self-restoring capability due to which the magnitude of peak isolator displacement and residual displacement is reduced. The roughness of the tempered curved surface of the rollers dissipates energy in motion due to frictional damping. The seismic performance of the multi-storey building mounted on the elliptical rolling rod base isolation system is compared with that mounted on the sliding pure-friction and cylindrical rolling rod systems. Parametric studies are conducted to examine the behavior of the building for different superstructure flexibilities, eccentricities of the elliptical rod, and coefficients of friction. It is concluded that the elliptical rolling rod base isolation system is effective in mitigation of damaging effects of the near-fault earthquake ground motions in the multi-storey buildings. Even under the near-fault earthquake ground motions, the base-isolated building mounted on the elliptical rolling rods shows considerable reduction in seismic response. The isolator displacement with the elliptical rolling rod base isolation system is less in comparison to the pure-friction and cylindrical rolling rod systems.


2020 ◽  
Vol 24 (1) ◽  
pp. 119-133
Author(s):  
Huihui Dong ◽  
Qiang Han ◽  
Xiuli Du ◽  
Canxing Qiu

Many studies on the strength reduction factor mainly focused on structures with the conventional hysteretic models. However, for the self-centering structure with the typical flag-shaped hysteretic behavior, the corresponding study is limited. The main purpose of this study is to investigate the strength reduction factor of the self-centering structure with flag-shaped hysteretic behavior subjected to near-fault pulse-like ground motions by the time history analysis. For this purpose, the smooth flag-shaped model based on Bouc-Wen model which can show flag-shaped hysteretic behavior is first described. The strength reduction factor spectra of the flag-shaped model are then calculated under 85 near-fault pulse-like ground motions. The influences of the ductility level, vibration period, site condition, hysteretic parameter, and hysteretic model are investigated statistically. For comparison, the strength reduction factors under ordinary ground motions are also analyzed. The results show that the strength reduction factor from near-fault pulse-like ground motions is smaller. Finally, a predictive model is proposed to estimate the strength reduction factor for the self-centering structure with the flag-shaped model under near-fault pulse-like ground motions.


Sign in / Sign up

Export Citation Format

Share Document