metal sensors
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Kathryn Beabout ◽  
Casey B. Bernhards ◽  
Meghna Thakur ◽  
Kendrick B. Turner ◽  
Stephanie D. Cole ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5964
Author(s):  
Wei Liu ◽  
Yineng Xiao ◽  
Xiaoming Wang ◽  
Fangming Deng

This paper presents a hydrogel-based flexible sensor array to detect plantar pressure distribution and recognize the gait patterns to assist those who suffer from gait disorders to rehabilitate better. The traditional pressure detection array is composed of rigid metal sensors, which have poor biocompatibility and expensive manufacturing costs. To solve the above problems, we have designed and fabricated a novel flexible sensor array based on AAM/NaCl (Acrylamide/Sodium chloride) hydrogel and PI (Polyimide) membrane. The proposed array exhibits excellent structural flexibility (209 KPa) and high sensitivity (12.3 mV·N−1), which allows it to be in full contact with the sole of the foot to collect pressure signals accurately. The Wavelet Transform-Random Forest (WT-RF) algorithm is introduced to recognize the gaits based on the plantar pressure signals. Wavelet transform realizes the signal filtering and normalization, and random forest is responsible for the classification of the processed signals. The classification accuracy of the WT-RF algorithm reaches 91.9%, which ensures the precise recognition of gaits.


2021 ◽  
Author(s):  
Venkatesan Srinivasadesikan ◽  
Chitra Varadaraju ◽  
Raghunath Putikam ◽  
Shyi-Long Lee

A great effort has been devoted to develop the numerical methods to solve Schrödinger equation for atoms and molecules which help to reveal the physico-chemical process and properties of various known/unknown materials. Designing the efficient probe to sense the heavy metals is a crucial process in chemistry. And, during this energy crisis, to find the effective conversion materials for water splitting is an important approach. The density functional theory (DFT) is a powerful tool to identify such materials and made great achievements in the field of heavy metal chemosensor and photocatalysis. Particularly, DFT helps to design the chemosensor for the effective sensor applications. The universe is moving towards the exhaustion of fossil fuels in a decade and so on, DFT plays a vital role to find the green energetic alternative to fossil fuel which is the Hydrogen energy. This book chapter will focus on the application of DFT deliberately on the heavy metal sensors and hydrogen evolution reaction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tessa R. Young ◽  
Maria Alessandra Martini ◽  
Andrew W. Foster ◽  
Arthur Glasfeld ◽  
Deenah Osman ◽  
...  

AbstractProtein metal-occupancy (metalation) in vivo has been elusive. To address this challenge, the available free energies of metals have recently been determined from the responses of metal sensors. Here, we use these free energy values to develop a metalation-calculator which accounts for inter-metal competition and changing metal-availabilities inside cells. We use the calculator to understand the function and mechanism of GTPase CobW, a predicted CoII-chaperone for vitamin B12. Upon binding nucleotide (GTP) and MgII, CobW assembles a high-affinity site that can obtain CoII or ZnII from the intracellular milieu. In idealised cells with sensors at the mid-points of their responses, competition within the cytosol enables CoII to outcompete ZnII for binding CobW. Thus, CoII is the cognate metal. However, after growth in different [CoII], CoII-occupancy ranges from 10 to 97% which matches CobW-dependent B12 synthesis. The calculator also reveals that related GTPases with comparable ZnII affinities to CobW, preferentially acquire ZnII due to their relatively weaker CoII affinities. The calculator is made available here for use with other proteins.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1391
Author(s):  
Farah Noun ◽  
Evelyne Anastasia Jury ◽  
Rafik Naccache

Overexposure to metals has significant adverse effects on human and animal health coupled with nefarious consequences to the environment. Sensitive tools to measure low contaminant levels exist, but often come at a high cost and require tedious procedures. Thus, there exists a need for the development of affordable metal sensors that can offer high sensitivity and selectivity while being accessible on a global scale. Here, carbon dots, prepared in a one-pot synthesis using glutathione and formamide, have been developed as dual fluorescent metal sensing probes. Following extensive characterization of their physico-chemical properties, it is demonstrated that dual fluorescence can be exploited to build a robust ratiometric sensor with low-ppb detection sensitivity in water. This investigation shows that these optical probes are selective for Pb2+ and Hg2+ ions. Using steady-state and dynamic optical characterization techniques, coupled with hard and soft acid-base theory, the underlying reason for this selective behavior was identified. These findings shed light on the nature of metal-carbon dot interactions, which can be used to tailor their properties to target specific metal ions. Finally, these findings can be applicable to other fluorescent nanoparticle systems that are targeted for development as metal sensors.


2020 ◽  
Vol 6 (5) ◽  
pp. 159-178
Author(s):  
Jing Gao ◽  
Yuncong Chen ◽  
Zijian Guo ◽  
Weijiang He

Abstract Transition metals such as zinc, copper and iron play vital roles in maintaining physiological functions and homeostasis of living systems. Molecular imaging, including two-photon imaging (TPI), bioluminescence imaging (BLI) and photoacoustic imaging (PAI), could act as non-invasive toolkits for capturing dynamic events in living cells, tissues and whole animals. Herein, we review the recent progress in the development of molecular probes for essential transition metals and their biological applications. We emphasize the contributions of metallostasis to health and disease, and discuss the future research directions about how to harness the great potential of metal sensors. Graphic Abstract


2020 ◽  
Vol 70 (1) ◽  
pp. 59-72
Author(s):  
Aula A Alwattar ◽  
Athir Haddad ◽  
Joshua Moore ◽  
Mubark Alshareef ◽  
Cian Bartlam ◽  
...  

2020 ◽  
Author(s):  
Tessa R. Young ◽  
Maria Alessandra Martini ◽  
Deenah Osman ◽  
Richard J. Morton ◽  
Evelyne Deery ◽  
...  

Protein metal-occupancy (metalation) in vivo has been elusive. Here we develop a metalation-calculator which accounts for inter-metal competition and changing metal-availabilities inside cells. The calculations are based on available free-energies of metals determined from the responses of metal sensors. We use the calculator to understand the function and mechanism of CobW, a predicted CoII-chaperone for vitamin B12. CobW is calculated to acquire negligible metal alone: But, upon binding nucleotide (GTP) and MgII, CobW assembles a high-affinity site that can obtain CoII or ZnII from the intracellular milieu. In idealised cells with sensors at the mid-points of their responses, competition within the cytosol enables CoII to outcompete ZnII for binding CobW. Thus, CoII is the cognate metal. However, after growth in different [CoII], CoII-occupancy ranges from 10 to 97% which matches CobW-dependent B12 synthesis. The calculator reveals how CobW acquires its metal and is made available for use with other proteins.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3053
Author(s):  
Tonoy Chowdhury ◽  
Nandika D’Souza ◽  
Yee Hsien Ho ◽  
Narendra Dahotre ◽  
Ifana Mahbub

Corrosion in underground and submerged steel pipes is a global problem. Coatings serve as an impermeable barrier or a sacrificial element to the transport of corrosive fluids. When this barrier fails, corrosion in the metal initiates. There is a critical need for sensors at the metal/coating interface as an early alert system. Current options utilize metal sensors, leading to accelerating corrosion. In this paper, a non-conductive sensor textile as a viable solution was investigated. For this purpose, non-woven Zinc (II) Oxide-Polyvinylidene Fluoride (ZnO-PVDF) nanocomposite fiber textiles were prepared in a range of weight fractions (1%, 3%, and 5% ZnO) and placed at the coating/steel interface. The properties of ZnO-PVDF nanocomposite meshes were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and d33 meter. Electrochemical impedance spectroscopy (EIS) testing was performed during the immersion of the coated samples to validate the effectiveness of the sensor textile. The results offer a new option for sub-surface corrosion sensing using low cost, easily fabricated sensor textiles.


Sign in / Sign up

Export Citation Format

Share Document