frontotemporal lobar dementia
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Arthur A. Vandenbark ◽  
Halina Offner ◽  
Szymon Matejuk ◽  
Agata Matejuk

AbstractThe brain is unique and the most complex organ of the body, containing neurons and several types of glial cells of different origins and properties that protect and ensure normal brain structure and function. Neurological disorders are the result of a failure of the nervous system multifaceted cellular networks. Although great progress has been made in the understanding of glia involvement in neuropathology, therapeutic outcomes are still not satisfactory. Here, we discuss recent perspectives on the role of microglia and astrocytes in neurological disorders, including the two most common neurodegenerative conditions, Alzheimer disease and progranulin-related frontotemporal lobar dementia, as well as astrocytoma brain tumors. We emphasize key factors of microglia and astrocytic biology such as the highly heterogeneic glial nature strongly dependent on the environment, genetic factors that predispose to certain pathologies and glia senescence that inevitably changes the CNS landscape. Our understanding of diverse glial contributions to neurological diseases can lead advances in glial biology and their functional recovery after CNS malfunction.


Author(s):  
Shofiul Azam ◽  
Md. Ezazul Haque ◽  
Rengasamy Balakrishnan ◽  
In-Su Kim ◽  
Dong-Kug Choi

Ageing is an inevitable event in the lifecycle of all organisms, characterized by progressive physiological deterioration and increased vulnerability to death. Ageing has also been described as the primary risk factor of most neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and frontotemporal lobar dementia (FTD). These neurodegenerative diseases occur more prevalently in the aged populations. Few effective treatments have been identified to treat these epidemic neurological crises. Neurodegenerative diseases are associated with enormous socioeconomic and personal costs. Here, the pathogenesis of AD, PD, and other neurodegenerative diseases has been presented, including a summary of their known associations with the biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communications. Understanding the central biological mechanisms that underlie ageing is important for identifying novel therapeutic targets for neurodegenerative diseases. Potential therapeutic strategies, including the use of NAD+ precursors, mitophagy inducers, and inhibitors of cellular senescence, has also been discussed.


2021 ◽  
Author(s):  
Xiaolei Chen ◽  
Zhongmei Yang ◽  
Wenfeng Wang ◽  
Kaiyue Qian ◽  
Mingjie Liu ◽  
...  

Abstract RBM45 is an RNA-binding protein involved in neural development, whose aggregation is associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). However, the mechanisms of RNA-binding and aggregation of RBM45 remain unelucidated. Here, we report the crystal structure of the N-terminal tandem RRM domains of human RBM45 in complex with single-stranded DNA (ssDNA). Our structural and biochemical results revealed that both the RRM1 and RRM2 of RBM45 recognized the GAC sequence of RNA/ssDNA. Two aromatic residues and an arginine residue in each RRM were critical for RNA-binding, and the interdomain linker was also involved in RNA-binding. Two RRMs formed a pair of antiparallel RNA-binding sites, indicating that the N-terminal tandem RRM domains of RBM45 bound separate GAC motifs in one RNA strand or GAC motifs in different RNA strands. Our findings will be helpful in the identification of physiologic targets of RBM45 and provide evidence for understanding the physiologic and pathologic functions of RBM45.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Ivana Štětkářová ◽  
Edvard Ehler

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by gradual loss of upper and lower motor neurons and their pathways, usually without affecting the extraocular and sphincter muscles. The cause of the disease is not yet known. It is a chain of subsequent events, ending in programmed cell death in selective neuronal subpopulations. The prognosis for survival is rather short with a median of 2 to 4 years. Survival may be prolonged based on prompt diagnosis, ALS subtype and proper management with supportive treatment (tracheostomy, gastrostomy, etc.). According to the clinical picture, the typical form of ALS with upper and lower motoneuron involvement and progressive bulbar paralysis with bulbar muscle involvement is observed. The ALS form with progressive muscle atrophy, where only the lower motoneuron is affected, and primary lateral sclerosis with only upper motoneuron damage are rare. Familiar forms of ALS (FALS) associated with specific genes (the most common is C9orf72) have been discovered. FALS is usually associated with dementia (frontotemporal lobar dementia, FTLD), behavioral disorders, cognitive dysfunction and impairment of executive functions. The diagnosis of ALS is determined by excluding other conditions and utilizing clinical examinations, laboratory and genetic tests and nerve conduction/needle electromyography studies (EMG). Needle EMG records abnormal activities at rest and looks for neurogenic patterns during muscle contraction. Motor evoked potentials after transcranial magnetic stimulation remain the test of choice to identify impairment of upper motor neurons. New biochemical, neurophysiological and morphological biomarkers are extensively studied as early diagnostic and prognostic factors and have implications for clinical trials, research and drug development.


2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Iain James Hartnell ◽  
David Blum ◽  
James A.R. Nicoll ◽  
Guillaume Dorothee ◽  
Delphine Boche

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 525 ◽  
Author(s):  
Tim Božič ◽  
Matja Zalar ◽  
Boris Rogelj ◽  
Janez Plavec ◽  
Primož Šket

The hexanucleotide expansion GGGGCC located in C9orf72 gene represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Since the discovery one of the non-exclusive mechanisms of expanded hexanucleotide G4C2 repeats involved in ALS and FTLD is RNA toxicity, which involves accumulation of pathological sense and antisense RNA transcripts. Formed RNA foci sequester RNA-binding proteins, causing their mislocalization and, thus, diminishing their biological function. Therefore, structures adopted by pathological RNA transcripts could have a key role in pathogenesis of ALS and FTLD. Utilizing NMR spectroscopy and complementary methods, we examined structures adopted by both guanine-rich sense and cytosine-rich antisense RNA oligonucleotides with four hexanucleotide repeats. While both oligonucleotides tend to form dimers and hairpins, the equilibrium of these structures differs with antisense oligonucleotide being more sensitive to changes in pH and sense oligonucleotide to temperature. In the presence of K+ ions, guanine-rich sense RNA oligonucleotide also adopts secondary structures called G-quadruplexes. Here, we also observed, for the first time, that antisense RNA oligonucleotide forms i-motifs under specific conditions. Moreover, simultaneous presence of sense and antisense RNA oligonucleotides promotes formation of heterodimer. Studied structural diversity of sense and antisense RNA transcripts not only further depicts the complex nature of neurodegenerative diseases but also reveals potential targets for drug design in treatment of ALS and FTLD.


2019 ◽  
Vol 39 (02) ◽  
pp. 188-199 ◽  
Author(s):  
Sowmya Mahalingam ◽  
Ming-Kai Chen

AbstractDementia is a global health issue, the burden of which will worsen with an increasingly aging population. Alzheimer's disease (AD) is the most common dementia, with 50 to 60% of all dementias attributable to AD alone, while the rest are mostly due to frontotemporal lobar dementia, dementia with Lewy bodies, Parkinson's disease dementia, and vascular dementia. Diagnosis of dementias is made clinically with the aid of other testing modalities including neuroimaging. While the role of imaging has traditionally been to exclude reversible causes of dementia, positron emission tomography (PET) with 18-fluorine fluorodeoxyglucose and magnetic resonance imaging now are increasingly used more for definitive diagnosis of dementia in the prodromal stages and to aid with formulating the differential diagnoses. Introduction of molecular imaging modalities such as amyloid PET and tau PET have improved diagnostic certainty in the clinical trial setting and promise to find their way into the clinic in the near future. In this review, we will focus on the multimodality imaging of dementias especially AD and its differential diagnoses.


2019 ◽  
Vol 13 ◽  
pp. 117906951984215 ◽  
Author(s):  
Alicia A Cutler ◽  
Theodore Eugene Ewachiw ◽  
Giulia A Corbet ◽  
Roy Parker ◽  
Brad B Olwin

A hallmark of many neuromuscular diseases including Alzheimer disease, inclusion body myositis, amyotrophic lateral sclerosis, frontotemporal lobar dementia, and ocular pharyngeal muscular dystrophy is large cytoplasmic aggregates containing the RNA-binding protein, TDP-43. Despite acceptance that cytoplasmic TDP-43 aggregation is pathological, cytoplasmic TDP-43 assemblies form in healthy regenerating muscle. These recently discovered ribonucleoprotein assemblies, termed myo-granules, form in healthy muscle following injury and are readily cleared as the myofibers mature. The formation and dissolution of myo-granules during normal muscle regeneration suggests that these amyloid-like oligomers may be functional and that perturbations in myo-granule kinetics or composition may promote pathological aggregation.


2017 ◽  
Vol 3 (6) ◽  
pp. e203 ◽  
Author(s):  
Mathieu Barbier ◽  
Agnès Camuzat ◽  
Marion Houot ◽  
Fabienne Clot ◽  
Paola Caroppo ◽  
...  

Objective:To quantify the effect of genetic factors and generations influencing the age at onset (AAO) in families with frontotemporal lobar dementia (FTD) due to C9ORF72 hexanucleotide repeat expansions and GRN mutations.Methods:We studied 504 affected individuals from 133 families with C9ORF72 repeat expansions and 90 FTD families with mutations in GRN, 2 major genes responsible for FTD and/or amyotrophic lateral sclerosis. Intrafamilial correlations of AAO were analyzed, and variance component methods were used for heritability estimates. Generational effects on hazard rates for AAO were assessed using mixed-effects Cox proportional hazard models.Results:A generational effect influencing AAO was detected in both C9ORF72 and GRN families. Nevertheless, the estimated proportion of AAO variance explained by genetic factors was high in FTD caused by C9ORF72 repeat expansions (44%; p = 1.10e−4), 62% when the AAO of dementia was specifically taken into account (p = 8.10e−5), and to a lesser degree in GRN families (26%; p = 0.17). Intrafamilial correlation analyses revealed a significant level of correlations in C9ORF72 families according to the degree of kinship. A pattern of intrafamilial correlations also suggested potential X-linked modifiers acting on AAO. Nonsignificant correlation values were observed in GRN families.Conclusions:Our results provide original evidence that genetic modifiers strongly influence the AAO in C9ORF72 carriers, while their effects seem to be weaker in GRN families. This constitutes a rational to search for genetic biomarkers, which could help to improve genetic counseling, patient care, and monitoring of therapeutic trials.


Sign in / Sign up

Export Citation Format

Share Document