scholarly journals Variations of the peak positions in the longitudinal profile of noon-time equatorial electrojet

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Zié Tuo ◽  
Vafi Doumbia ◽  
Pierdavide Coïsson ◽  
N’Guessan Kouassi ◽  
Abdel Aziz Kassamba

AbstractIn this study, the seasonal variations of the EEJ longitudinal profiles were examined based on the full CHAMP satellite magnetic measurements from 2001 to 2010. A total of 7537 satellite noon-time passes across the magnetic dip-equator were analyzed. On the average, the EEJ exhibits the wave-four longitudinal pattern with four maxima located, respectively, around 170° W, 80° W, 10° W and 100° E longitudes. However, a detailed analysis of the monthly averages yielded the classification of the longitudinal profiles in two types. Profiles with three main maxima located, respectively, around 150° W, 0° and 120° E, were observed in December solstice (D) of the Lloyd seasons. In addition, a secondary maximum observed near 90° W in November, December and January, reinforces from March to October to establish the wave-four patterns of the EEJ longitudinal variation. These wave-four patterns were divided into two groups: a group of transition which includes equinox months March, April and October and May in the June solstice; and another group of well-established wave-four pattern which covers June, July, August of the June solstice and the month of September in September equinox. For the first time, the motions in the course of seasons of various maxima of the EEJ noon-time longitudinal profiles have been clearly highlighted.

2013 ◽  
Vol 31 (8) ◽  
pp. 1315-1331 ◽  
Author(s):  
H. Lühr ◽  
C. Manoj

Abstract. Based on 10 yr of magnetic field measurements by the CHAMP satellite we draw a detailed picture of the equatorial electrojet (EEJ) tidal variations. For the first time the complete EEJ spectrum related to average solar tides has been compiled. A large fraction of the resulting spectrum is related to the switch on/off of the EEJ between day and night. This effect has carefully been considered when interpreting the results. As expected, largest amplitudes are caused by the migrating tides representing the mean diurnal variation. Higher harmonics of the daily variations show a 1/f fall-off in amplitude. Such a spectrum is required to represent the vanishing of the EEJ current at night. The migrating tidal signal exhibits a distinct annual variation with large amplitudes during December solstice and equinox seasons but a depression by a factor of 1.7 around June–July. A rich spectrum of non-migrating tidal effects is deduced. Most prominent is the four-peaked longitudinal pattern around August. Almost 90% of the structure can be attributed to the diurnal eastward-propagating tide DE3. In addition the westward-propagating DW5 is contributing to wave-4. The second-largest non-migrating tide is the semi-diurnal SW4 around December solstice. It causes a wave-2 feature in satellite observations. The three-peaked longitudinal pattern, often quoted as typical for the December season, is significantly weaker. During the months around May–June a prominent wave-1 feature appears. To first order it represents a stationary planetary wave SPW1 which causes an intensification of the EEJ at western longitudes beyond 60° W and a weakening over Africa/India. In addition, a prominent ter-diurnal non-migrating tide TW4 causes the EEJ to peak later, at hours past 14:00 local time in the western sector. A particularly interesting non-migrating tide is the semi-diurnal SW3. It causes largest EEJ amplitudes from October through December. This tidal component shows a strong dependence on solar flux level with increasing amplitudes towards solar maximum. We are not aware of any previous studies mentioning this behaviour of SW3. The main focus of this study is to present the observed EEJ spectrum and its relation to tidal driving. For several of the identified spectral components we cannot offer convincing explanations for the generation mechanisms.


2011 ◽  
Vol 29 (1) ◽  
pp. 81-89 ◽  
Author(s):  
P. S. Brahmanandam ◽  
Y.-H. Chu ◽  
K.-H. Wu ◽  
H.-P. Hsia ◽  
C.-L. Su ◽  
...  

Abstract. From global soundings of ionospheric electron density made with FORMOSAT 3/COSMIC satellites for September 2006–August 2009, day-night variations in vertical and longitudinal structures of the electron densities in equatorial E- and F-regions for different seasons are investigated for the first time. The results reveal that the wavenumber-3 and wavenumber-4 patterns dominated the nighttime (22:00–04:00 LT) F-region longitudinal structures in solstice and in equinox seasons, respectively. In daytime (08:00–18:00 LT) F-region, the wavenumber-4 patterns governed the longitudinal structures in the September equinox and December solstice, and wavenumber-3 in March equinox and June solstice respectively. A comparison of the daytime and nighttime longitudinal electron density structures indicates that they are approximately 180° out of phase with each other. It is believed that this out of phase relation is very likely the result of the opposite phase relation between daytime and nighttime nonmigrating diurnal tidal winds that modulate background E-region dynamo electric field at different places, leading to the day-night change in the locations of the equatorial plasma fountains that are responsible for the formation of the F-region longitudinal structures. Further, a good consistency between the locations of the density structures in the same seasons of the different years for both daytime and nighttime epochs has been noticed indicating that the source mechanism for these structures could be the same.


1996 ◽  
Vol 14 (2) ◽  
pp. 238-245 ◽  
Author(s):  
D. Pallam Raju ◽  
R. Sridharan ◽  
S. Gurubaran ◽  
R. Raghavarao

Abstract. A meridional scanning OI 630.0-nm dayglow photometer was operated from Ahmedabad (17.2°N dip lat.) scanning a region towards the south in the upper atmosphere extending over ~5° in latitude from 10.2°N to 15.2°N dip latitude. From the spatial and temporal variabilities of the dayglow intensity in the scanning region we show for the first time, evidence for the passage of the crest of the equatorial ionization anomaly (EIA) in the daytime by means of a ground-based optical technique. The relationship between the daytime eastward electric field over the dip equator in the same longitude zone as inferred from the equatorial electrojet strength and the evolutionary pattern of EIA is clearly demonstrated. The latter as inferred from the dayglow measurements is shown to be consistent with our present understanding of the electrodynamical processes in the equatorial region. The present results reveal the potential of this ground-based optical technique for the investigation of ionospheric/thermospheric phenomena with unprecedented spatial and temporal resolution.


2007 ◽  
Vol 25 (5) ◽  
pp. 1125-1130 ◽  
Author(s):  
L. A. Hajkowicz

Abstract. Ionograms from a standard vertical-incidence ionosonde chain (nine stations), obtained over a wide range of southern latitudes (in geom.lat. range: 23°–52° S), were digitally scanned at 5-min intervals at nighttime (18:00–06:00 LT) for 13 months (January 2004–January 2005). An important parameter of the F-region, so-called range spread-F (Sr), was for the first time quantified in km. Maximum in Sr was recorded at a sounding frequency of 1.8 MHz for each night and for each ionosonde station. A distinct pattern in the magnitude (in km) and in the percentage occurrence of the range spread-F was present in southern winter only (the June solstice). The sub-auroral region (geom. lat. ≥52° S) is characterised by consistently high spread-F (average Sr≈100 km) on 80–100 per cent of the observed nights. There is a sharp equatorward boundary in the spread-F activity in a latitudinal range: 52°–48° S followed by a midlatitude region (44°–48° S) which exhibits a peak in Sr (≈50 km) in winter only, observed on half of the nights. The midlatitude activity reaches its minimum at 42°–43° S, with Sr less than 20 km on one third of the nights. The low midlatitudes (23°–36° S) are characterised by a strong peak in Sr again in winter, centred at about 30° S (average Sr≈70 km) on 80 per cent of the nights. The pattern becomes largely absent during other seasons particularly in southern summer (the December solstice) when spread-F activity shifts to sub-auroral latitudes. The pattern in the occurrence of spread-F appears to have a global character as the enhanced spread-F activity is observed in the Japanese sector in local summer (i.e. the June solstice). It appears that the midlatitude spread-F minimum is only apparent but not real. It delineates the boundary between aurorally generated spread-F (due to travelling ionospheric disturbances, TIDs) and low midlatitude spread-F whose origin is not known.


2016 ◽  
Vol 7 ◽  
pp. 990-994 ◽  
Author(s):  
Xiaoyu Li ◽  
Lijuan Sun ◽  
Hu Wang ◽  
Kenan Xie ◽  
Qin Long ◽  
...  

In contrast to the majority of related experiments, which are carried out in organic solvents at high temperatures and pressures, cobalt nanowires were synthesized by chemical reduction in aqueous solution with the assistance of polyvinylpyrrolidone (PVP) as surfactant under moderate conditions for the first time, while an external magnetic field of 40 mT was applied. Uniform linear cobalt nanowires with relatively smooth surfaces and firm structure were obtained and possessed an average diameter of about 100 nm with a coating layer of PVP. By comparison, the external magnetic field and PVP were proven to have a crucial influence on the morphology and the size of the synthesized cobalt nanowires. The prepared cobalt nanowires are crystalline and mainly consist of cobalt as well as a small amount of platinum. Magnetic measurements showed that the resultant cobalt nanowires were ferromagnetic at room temperature. The saturation magnetization (M s) and the coercivity (H c) were 112.00 emu/g and 352.87 Oe, respectively.


2021 ◽  
Vol 5 (1) ◽  
pp. 539-557
Author(s):  
Aniefiok Akpaneno ◽  
O. N. Abdulahi

This research is monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. It presents the variations of Horizontal (H) and vertical (Z) component of the geomagnetic field at some Equatorial Electrojet (EEJ) Stations during quiet days. Data from five (5) observatories along the magnetic equator were used for the study. Daily baseline values for each of the geomagnetic element 𝐻 and Z were obtained. The monthly average of the diurnal variation and the seasonal variations were found. Results showed that the variations of the geomagnetic element of both H and Z differ in magnitudes from one stations to another along the geomagnetic Equator due to the differences of their geomagnetic latitude. The Amplitude curves for Z) are seen to be conspicuously opposite to that of H), and there is absence of CEJ in Z- Component but present in H- Components. The  values during the pre-sunrise hours are low compare to daytime hours. Minimum variations of dH was observed during June solstice and maximum variations was observed during Equinox season. This study shows that daily variations of (H) and (Z) occur in all the stations. The enhancement in H is as a result of EEJ current.


2004 ◽  
Vol 22 (9) ◽  
pp. 3323-3333 ◽  
Author(s):  
V. Doumouya ◽  
Y. Cohen

Abstract. The longitudinal variation of the Equatorial Electrojet (EEJ) intensity has been revised including data from the equatorial station of Baclieu (Vietnam), where an unexpected enhancement of the EEJ magnetic effects is observed. The features of this longitudinal variation were also obtained with the CHAMP satellite, except in the Pacific and Atlantic Oceans, where no ground level data points were available.The EEJ magnetic signatures recorded on board the CHAMP satellite have been isolated for 325 passes in different longitude sectors around local noon. The results have been compared with the EEJ magnetic effects computed using the Empirical Equatorial Electrojet Model (3EM) proposed by Doumouya et al. (2003). The modeled EEJ magnetic effects are generally in good agreement with CHAMP observed EEJ magnetic signatures.


2013 ◽  
Vol 31 (6) ◽  
pp. 1115-1130 ◽  
Author(s):  
C. Xiong ◽  
H. Lühr

Abstract. Based on nine years of observations from the satellites CHAMP and GRACE the tidal signatures in the magnitude and the inter-hemisphere asymmetry of the equatorial ionization anomaly (EIA) have been investigated in this study. The EIA magnitude parameters show longitudinal wavenumber 4 and 3 (WN4/WN3) patterns during the months around August and December, respectively, while for different EIA parameters the contributions of the various tidal parameters are different. For the crest-to-trough ratio (CTR) the dominating nonmigrating tidal component contributing to WN4 is DE3 during the months around August, while during the months around December solstice the stationary planetary wave, SPW3, takes a comparable role to DE2 in contributing to WN3. For the apex height index (ApexHC) of the EIA fluxtube the stationary planetary waves, SPW4/SPW3, exceed the amplitudes of DE3/DE2 taking the leading role in causing the longitudinal WN4/WN3 patterns. During the months around December solstice the SW3 tide is prominent in both CTR and ApexHC. SW3 shows a strong dependence on the solar flux level, while it is hardly dependent on magnetic activity. For the EIA inter-hemispheric asymmetry only WN1 and WN2 longitudinal patterns can be seen. During June solstice months the pattern can be explained by stationary planetary waves SPW1 and SPW2. Conversely, around December solstice months longitudinal features exhibit some local time evolution, in particular the diurnal nonmigrating tide D0 takes the leading role.


Sign in / Sign up

Export Citation Format

Share Document