New Kinetic Turbidity Test Method and Prediction Model for Calcite Inhibition

2021 ◽  
Author(s):  
Chong Dai ◽  
Zhaoyi Dai ◽  
Samiridhdi Paudyal ◽  
Saebom Ko ◽  
Yue Zhao ◽  
...  

Abstract Calcite, as one of the most common scales in oilfield can be inhibited by common scale inhibitors. The measurement of calcite nucleation and inhibition is a challenge, because of the difficulty to control pH as a result of CO2 partitioning in and out of the aqueous phase. A new kinetic turbidity test method was developed so that the partial pressure of CO2, pH, and SI can be precisely controlled. Calcite nucleation and inhibition batch tests were conducted under various conditions (SI = 0.24-2.41, T = 4-175 °C, and pH = 5.5-7.5) in the presence of common phosphonate and polymeric inhibitors. Based on experimental results, calcite nucleation and inhibition semi-empirical models are proposed, and the logarithm of the predicted induction time is in good agreement with the measured induction time. The models are also validated with laboratory and field observations. Furthermore, a new BCC CSTR Inhibition (BCIn) test method that applied the Continuous Stirred Tank Reactor (CSTR) theory has been developed, for the first time. This BCIn method was used for calcite inhibitor screening tests and minimum inhibitor concentration (MIC) estimation. By only running one experiment (< 1 hour) for each inhibitor, BCIn method selected the effective inhibitors among 18 common inhibitors under the conditions of SI = 1.23 at 90 °C and pH = 6. It was also found that the critical concentration (Ccrit) from BCIn method has a correlation with the MIC from batch tests. This study provided a simple and reliable solution for conducting calcite scale inhibition tests in an efficient and low-cost way. Furthermore, the newly developed prediction models can be used as guidance for laboratory tests and field applications, potentially saving enormous amounts of time and money.

2021 ◽  
Author(s):  
LUKE GEISE ◽  
ANDREW ABBOTT ◽  
DANIEL RAPKING ◽  
MARK FLORES

Additive manufacturing (AM) of short-fiber reinforced composites are actively being considered for construction of low-cost, weight reducing alternatives to non-structural metal components. In addition AM parts are being used for rapid manufacturing of composite tooling. AM is notorious for generating parts with higher porosity than more traditional manufacturing technologies. Due to the aerospace industry’s low risk tolerance, novel material systems require comprehensive characterization of their associated manufacturing defects and the impact of defects on performance in order to receive certification. AM short fiber composites still require this analysis. Although traditional composite manufacturing methods, such as an autoclave or VARTM can produce porosity, the origin and transport of porosity has been thoroughly studied and acceptable limits for part qualification have been established to minimize the effect on performance. In AM components studies establishing the origination of porosity origin and processing defect related minimization strategies are lacking. A preliminary study on the impacts of porosity caused by print parameters such print speed, layer height, first layer height, and step-over distance has been undertaken. Direct Ink Writing (DIW) was selected for this study using an epoxy-based ink filled with clay and chopped carbon fiber. To understand performance, fracture and shear specimens were fabricated with different test parameters based on the assumed levels of porosity from screening tests. Samples were then mechanically tested using a novel in-plane shear test method and a single edge notch tension test. This study explores the processing parameter’s contribution to porosity and establishes general trends to understand the influence of porosity on performance for additively manufactured chopped fiber composites.


2020 ◽  
Author(s):  
Chong Dai ◽  
Samiridhdi Paudyal ◽  
Saebom Ko ◽  
Bingjie Ouyang ◽  
Yi-Tsung Lu ◽  
...  

Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


2021 ◽  
Author(s):  
Hamid Omidvarborna ◽  
Prashant Kumar

<p>The majority of people spend most of their time indoors, where they are exposed to indoor air pollutants. Indoor air pollution is ranked among the top ten largest global burden of a disease risk factor as well as the top five environmental public health risks, which could result in mortality and morbidity worldwide. The spent time in indoor environments has been recently elevated due to coronavirus disease 2019 (COVID-19) outbreak when the public are advised to stay in their place for longer hours per day to protect lives. This opens an opportunity to low-cost air pollution sensors in the real-time Spatio-temporal mapping of IAQ and monitors their concentration/exposure levels indoors. However, the optimum selection of low-cost sensors (LCSs) for certain indoor application is challenging due to diversity in the air pollution sensing device technologies. Making affordable sensing units composed of individual sensors capable of measuring indoor environmental parameters and pollutant concentration for indoor applications requires a diverse scientific and engineering knowledge, which is not yet established. The study aims to gather all these methodologies and technologies in one place, where it allows transforming typical homes into smart homes by specifically focusing on IAQ. This approach addresses the following questions: 1) which and what sensors are suitable for indoor networked application by considering their specifications and limitation, 2) where to deploy sensors to better capture Spatio-temporal mapping of indoor air pollutants, while the operation is optimum, 3) how to treat the collected data from the sensor network and make them ready for the subsequent analysis and 4) how to feed data to prediction models, and which models are best suited for indoors.</p>


2021 ◽  
Author(s):  
ABDELAZIZ IMGHARN ◽  
Nouh Aarab ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
Mohammed Elhoudi ◽  
...  

Abstract The aim of this work is to investigate the adsorption performance of orange G (OG) dye from aqueous solutions employing PANI@sawdust biocomposite enrobed by calcium-alginate biobeads (Alg-PANI@SD). The as-prepared adsorbent was characterized by scanning-electron-microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and Fourier transforms infrared (FT-IR) spectroscopy, and used to remove Orange G dye from water. batch tests were performed as a function of adsorbent dosage, pH, contact time, interfering ions and initial OG dye concentration. Experimental results show that the kinetic model of pseudo-first-order (PFO) and Freundlich isotherm provided a good fitting of the whole experimental data. The results revealed that the as-prepared tricomposite Alg-PANI@SD, has the potential to be applied as a low-cost adsorbent for the adsorption of OG dye from aqueous media.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 658
Author(s):  
Matthew F. Digman ◽  
Jerry H. Cherney ◽  
Debbie J. R. Cherney

Advanced manufacturing techniques have enabled low-cost, on-chip spectrometers. Little research exists, however, on their performance relative to the state of technology systems. The present study compares the utility of a benchtop FOSS NIRSystems 6500 (FOSS) to a handheld NeoSpectra-Scanner (NEO) to develop models that predict the composition of dried and ground grass, and alfalfa forages. Mixed-species prediction models were developed for several forage constituents, and performance was assessed using an independent dataset. Prediction models developed with spectra from the FOSS instrument had a standard error of prediction (SEP, % DM) of 1.4, 1.8, 3.3, 1.0, 0.42, and 1.3, for neutral detergent fiber (NDF), true in vitro digestibility (IVTD), neutral detergent fiber digestibility (NDFD), acid detergent fiber (ADF), acid detergent lignin (ADL), and crude protein (CP), respectively. The R2P for these models ranged from 0.90 to 0.97. Models developed with the NEO resulted in an average increase in SEP of 0.14 and an average decrease in R2P of 0.002.


2007 ◽  
Vol 14 (3) ◽  
pp. 299-303 ◽  
Author(s):  
C. Ramírez-Pfeiffer ◽  
K. Nielsen ◽  
P. Smith ◽  
F. Marín-Ricalde ◽  
C. Rodríguez-Padilla ◽  
...  

ABSTRACT The screening Rose Bengal test (RBT), the buffered plate agglutination test (BPAT), and the confirmatory complement fixation test (CFT) are currently approved by the World Organization for Animal Health (OIE) for diagnosis of goat brucellosis. However, RBT (at 3% or 8% cell concentration) is known to be affected by vaccinal antibodies. In the present study, Mexican and Canadian OIE tests were compared with the fluorescence polarization assay (FPA), alone or in combination, using indirect and competitive enzyme-linked immunosorbent assays as classification variables for goat sera obtained from an area of high prevalence and widespread vaccination. The relative sensitivities and specificities were, respectively, 99.7% and 32.5% for RBT3, 92.8% and 68.8% for RBT8, 98.4% and 84.8% for Canadian CFT, 83.7% and 65.5% for Mexican CFT, and 78.1% and 89.3% for FPA. The use of FPA as the confirmatory test in combination with other tests significantly increased the final specificities of the screening tests alone; BPAT, RBT3, and RBT8 plus FPA resulted in final specificities of 90%, 91.2%, and 91.3%, respectively, whereas for the combinations RBT3 plus Mexican CFT, RBT8 plus Mexican CFT, and BPAT plus Canadian CFT, specificities were 65.5%, 63.2%, and 91.7%, respectively. We suggest that FPA may be routinely applied as an adaptable screening test for diagnosis of goat brucellosis and as a confirmatory test for screening test series. Some advantages of FPA are that its cutoff can be adjusted to improve its sensitivity or specificity, it is a low-cost and easy-to-perform test of choice when specificity is relevant or when an alternative confirmatory test is not available, and it is not affected by vaccination, thus reducing the number of misdiagnosed and killed goats.


1961 ◽  
Vol 34 (3) ◽  
pp. 777-789
Author(s):  
W. E. Claxton ◽  
F. S. Conant ◽  
J. W. Liska

Abstract An apparatus and method are described for evaluating state of cure, optimum cure time, rate of cure, induction time for cure, scorch time, induction time for reversion, reversion rate and degree of reversion of elastomeric compounds. Coincident with these determinations vulcanizate specimens are prepared on which more conventional physical test data may be obtained; e.g., compression modulus, compression set, hardness, specific gravity, tensile modulus and elongation. In essence, the method described provides a progressive measure of modulus change during cure or reversion through the change in deformation of a periodically loaded plunger, one end of which is embedded into the specimen. Typical results are given which show application of the apparatus to screening tests, millroom control, reversion studies and to compounds which are too stiff for conventional test methods. Demonstrated advantages for the apparatus include time saving, stock saving and better cure information on a wider range of polymeric compounds than is obtainable from tensile test methods. In a laboratory where a large selection of test instruments is not feasible, the versatility of the apparatus described should prove very advantageous.


Sign in / Sign up

Export Citation Format

Share Document