scholarly journals A Zebrafish Model of Neurotoxicity by Binge-Like Methamphetamine Exposure

2021 ◽  
Vol 12 ◽  
Author(s):  
Juliette Bedrossiantz ◽  
Marina Bellot ◽  
Pol Dominguez-García ◽  
Melissa Faria ◽  
Eva Prats ◽  
...  

Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing at 20 and 40 mg/L for 48 h, the later METH concentration was selected for developing the model and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure, followed 3 h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3 h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48 h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse.

2019 ◽  
Vol 237 (3) ◽  
pp. 735-743 ◽  
Author(s):  
Barbara D. Fontana ◽  
Tamie Duarte ◽  
Talise E. Müller ◽  
Julia Canzian ◽  
Paola R. Ziani ◽  
...  

AbstractTaurine (TAU) is a β-amino sulfonic acid with pleiotropic roles in the brain, including the neuromodulatory activity via GABAergic and glycinergic agonism. This molecule is found at high concentrations in energy drinks and is often mixed with alcohol in beverages. Although TAU has a neuroprotective role in the brain, the putative risks of mixing TAU and EtOH are not fully understood. Here, we investigated whether TAU modulates locomotor and anxiety-like behavior in adult zebrafish by using the novel tank and light-dark tests following acute EtOH exposure at anxiogenic and anxiolytic concentrations. Zebrafish were individually exposed to water (control), TAU (42, 150, and 400 mg/L), and EtOH (0.25% (v/v) and 1% (v/v)) both independently and cotreated for 1 h. EtOH 0.25% and TAU produced U-shape anxiolytic-like behavior in the light-dark test, TAU 42 and 400 positively modulated EtOH effects, and TAU 150 exerted a protective effect. All TAU concentrations counteracted EtOH 1%-induced locomotion impairment, as well as the anxiogenic-like behavior. Finally, all TAU concentrations when given independently or cotreated with EtOH 0.25% and 1% decreased the risk assessment of the lit compartment. Principal component analyses revealed that exploration and anxiety-like responses were the main behaviors that contribute to the effects of TAU and EtOH. Overall, we demonstrate that TAU differently modulates EtOH-induced anxiolytic- and anxiogenic-like behaviors depending on the concentration, suggesting a complex mechanism underlying TAU and EtOH interactions.


Author(s):  
Antonio Giovannetti ◽  
Gianluca Susi ◽  
Paola Casti ◽  
Arianna Mencattini ◽  
Sandra Pusil ◽  
...  

AbstractIn this paper, we present the novel Deep-MEG approach in which image-based representations of magnetoencephalography (MEG) data are combined with ensemble classifiers based on deep convolutional neural networks. For the scope of predicting the early signs of Alzheimer’s disease (AD), functional connectivity (FC) measures between the brain bio-magnetic signals originated from spatially separated brain regions are used as MEG data representations for the analysis. After stacking the FC indicators relative to different frequency bands into multiple images, a deep transfer learning model is used to extract different sets of deep features and to derive improved classification ensembles. The proposed Deep-MEG architectures were tested on a set of resting-state MEG recordings and their corresponding magnetic resonance imaging scans, from a longitudinal study involving 87 subjects. Accuracy values of 89% and 87% were obtained, respectively, for the early prediction of AD conversion in a sample of 54 mild cognitive impairment subjects and in a sample of 87 subjects, including 33 healthy controls. These results indicate that the proposed Deep-MEG approach is a powerful tool for detecting early alterations in the spectral–temporal connectivity profiles and in their spatial relationships.


Author(s):  
Dominic Gascho ◽  
Michael J. Thali ◽  
Rosa M. Martinez ◽  
Stephan A. Bolliger

AbstractThe computed tomography (CT) scan of a 19-year-old man who died from an occipito-frontal gunshot wound presented an impressive radiating fracture line where the entire sagittal suture burst due to the high intracranial pressure that arose from a near-contact shot from a 9 mm bullet fired from a Glock 17 pistol. Photorealistic depictions of the radiating fracture lines along the cranial bones were created using three-dimensional reconstruction methods, such as the novel cinematic rendering technique that simulates the propagation and interaction of light when it passes through volumetric data. Since the brain had collapsed, depiction of soft tissue was insufficient on CT images. An additional magnetic resonance imaging (MRI) examination was performed, which enabled the diagnostic assessment of cerebral injuries.


2018 ◽  
Vol 315 (2) ◽  
pp. F291-F299 ◽  
Author(s):  
Xiaoyan Wen ◽  
Liyan Cui ◽  
Seth Morrisroe ◽  
Donald Maberry ◽  
David Emlet ◽  
...  

Sepsis-associated acute kidney injury (S-AKI) independently predicts mortality among critically ill patients. The role of innate immunity in this process is unclear, and there is an unmet need for S-AKI models to delineate the pathophysiological response. Mammals and zebrafish ( Danio rerio) share a conserved nephron structure and homologous innate immune systems, making the latter suitable for S-AKI research. We introduced Edwardsiella tarda to the zebrafish. Systemic E. tarda bacteremia resulted in sustained bacterial infection and dose-dependent mortality. A systemic immune reaction was characterized by increased mRNA expressions of il1b, tnfa, tgfb1a, and cxcl8-l1 ( P < 0.0001, P < 0.001, P < 0.001, and P < 0.01, respectively). Increase of host stress response genes ccnd1 and tp53 was observed at 24 h postinjection ( P < 0.0001 and P < 0.05, respectively). Moderate E. tarda infection induced zebrafish mortality of over 50% in larvae and 20% in adults, accompanied by pericardial edema in larvae and renal dysfunction in both larval and adult zebrafish. Expression of AKI markers insulin-like growth factor-binding protein-7 (IGFBP7), tissue inhibitor of metalloproteinases 2 (TIMP-2), and kidney injury molecule-1 (KIM-1) was found to be significantly increased in the septic animals at the transcription level ( P < 0.01, P < 0.05, and P < 0.05) and in nephric tubules compared with noninfected animals. In conclusion, we established a zebrafish model of S-AKI induced by E. tarda injection, with both larval and adult zebrafish showing nephron injury in the setting of infection.


2021 ◽  
Vol 85 ◽  
pp. 103636
Author(s):  
Teresa Capriello ◽  
Luis M. Félix ◽  
Sandra M. Monteiro ◽  
Dércia Santos ◽  
Rita Cofone ◽  
...  

Author(s):  
Lingfeng Qin ◽  
Haifeng Zhang ◽  
Busu Li ◽  
Quan Jiang ◽  
Francesc Lopez ◽  
...  

Objective: Cerebral cavernous malformations (CCMs) can happen anywhere in the body, although they most commonly produce symptoms in the brain. The role of CCM genes in other vascular beds outside the brain and retina is not well-examined, although the 3 CCM-associated genes ( CCM1 , CCM2 , and CCM3 ) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in lymphatics. Approach and Results: Mice with an inducible pan–endothelial cell (EC) or lymphatic EC deletion of Ccm3 ( Pdcd10 ECKO or Pdcd10 LECKO ) exhibit dilated lymphatic capillaries and collecting vessels with abnormal valve structure. Morphological alterations were correlated with lymphatic dysfunction in Pdcd10 LECKO mice as determined by Evans blue dye and fluorescein isothiocyanate(FITC)-dextran transport assays. Pdcd10 LECKO lymphatics had increased VEGFR3 (vascular endothelial growth factor receptor-3)-ERK1/2 signaling with lymphatic hyperplasia. Mechanistic studies suggested that VEGFR3 is primarily regulated at a transcriptional level in Ccm3-deficient lymphatic ECs, in an NF-κB (nuclear factor κB)–dependent manner. CCM3 binds to importin alpha 2/KPNA2 (karyopherin subunit alpha 2), and a CCM3 deletion releases KPNA2 to activate NF-κB P65 by facilitating its nuclear translocation and P65-dependent VEGFR3 transcription. Moreover, increased VEGFR3 in lymphatic EC preferentially activates ERK1/2 signaling, which is critical for lymphatic EC proliferation. Importantly, inhibition of VEGFR3 or ERK1/2 rescued the lymphatic defects in structure and function. Conclusions: Our data demonstrate that CCM3 deletion augments the VEGFR3-ERK1/2 signaling in lymphatic EC that drives lymphatic hyperplasia and malformation and warrant further investigation on the potential clinical relevance of lymphatic dysfunction in patients with CCM.


2018 ◽  
Vol 19 (10) ◽  
pp. 3195 ◽  
Author(s):  
Sreeja Sarasamma ◽  
Gilbert Audira ◽  
Stevhen Juniardi ◽  
Bonifasius Sampurna ◽  
Sung-Tzu Liang ◽  
...  

In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer’s Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid β) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.


Author(s):  
Ehsan T. Esfahani ◽  
Shrey Pareek ◽  
Pramod Chembrammel ◽  
Mostafa Ghobadi ◽  
Thenkurussi Kesavadas

Recognition of user’s mental engagement is imperative to the success of robotic rehabilitation. The paper explores the novel paradigm in robotic rehabilitation of using Passive BCI as opposed to the conventional Active ones. We have designed experiments to determine a user’s level of mental engagement. In our experimental study, we record the brain activity of 3 healthy subjects during multiple sessions where subjects need to navigate through a maze using a haptic system with variable resistance/assistance. Using the data obtained through the experiments we highlight the drawbacks of using conventional workload metrics as indicators of human engagement, thus asserting that Motor and Cognitive Workloads be differentiated. Additionally we propose a new set of features: differential PSD of Cz-Poz at alpha, Beta and Sigma band, (Mental engagement) and relative C3-C4 at beta (Motor Workload) to distinguish Normal Cases from those instances when haptic where applied with an accuracy of 92.93%. Mental engagement is calculated using the power spectral density of the Theta band (4–7 Hz) in the parietal-midline (Pz) with respect to the central midline (Cz). The above information can be used to adjust robotic rehabilitation parameters I accordance with the user’s needs. The adjustment may be in the force levels, difficulty level of the task or increasing the speed of the task.


Author(s):  
Suianny Nayara da Silva Chaves ◽  
Bruna Patrícia Dutra Costa ◽  
Gabriela Cristini Vidal Gomes ◽  
Monica Lima-Maximino ◽  
Eduardo Pacheco Rico ◽  
...  

Nitric oxide has been implicated in symptoms of ethanol withdrawal in animal models. Zebrafish have been used as models to study neurobehavioral effects of ethanol (EtOH) withdrawal, but the mechanisms associated with these effects are not yet clear. Adult zebrafish were treated with 1% EtOH for 20 min per day for 8 days, injected with the nitric oxide synthase 2 (NOS-2) inhibitor aminoguanidine (50 mg/kg), and allowed to experience withdrawal (WD) in their hometanks for 7 days. EtOH WD increased anxiety-like behavior in the novel tank test, an effect that was blocked by aminoguanidine. EtOH WD also increased brain levels of nitrite, an effect that was partially blocked by aminoguanidine. These results underline a novel mechanism by which NOS-2 controls anxiety-like responses to ethanol withdrawal, with implications for the mechanistic study of symptoms associated with chronic ethanol abuse.


Sign in / Sign up

Export Citation Format

Share Document