scholarly journals Comparing Metrics for Scenario-based Robustness Assessment of Building Performance

2021 ◽  
Vol 2042 (1) ◽  
pp. 012150
Author(s):  
Linus Walker ◽  
Alexandra Kuhn ◽  
Illias Hischier ◽  
Arno Schlueter

Abstract To decrease greenhouse gas emissions of the Swiss building stock, effective retrofit strategies are necessary. Due to the long-term operation of buildings, future developments and uncertainties need to be considered, which calls for assessing the robustness of retrofit decisions. Existing studies propose robustness metrics for decisions under deep uncertainty to be coupled with a scenario-based simulation approach. We review these metrics and present a simulation approach that includes current and future operational energy, emissions, and costs. We apply the seven identified metrics to retrofit decisions of a multifamily house located in Zurich, where future scenarios in terms of climate, occupancy, decarbonization, and cost development are included. The metrics are based on different assumptions and positions towards risk. We further find that the discriminatory power is different, confirming the Minimax Regret metric to be most suitable for the building context when looking at individual buildings. For the case study, we find that deep retrofit seems to be a robust decision from an environmental perspective. From a cost perspective, the electrification of the heating system with heat pumps and the installation of PV without a complete envelope retrofit proves to be most robust.

2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2347
Author(s):  
Elżbieta Hałaj ◽  
Jarosław Kotyza ◽  
Marek Hajto ◽  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
...  

Krakow has an extensive district heating network, which is approximately 900 km long. It is the second largest city in terms of the number of inhabitants in Poland, resulting in a high demand for energy—for both heating and cooling. The district heating of the city is based on coal. The paper presents the conception of using the available renewable sources to integrate them into the city’s heating system, increasing the flexibility of the system and its decentralization. An innovative solution of the use of hybrid, modular heat pumps with power dependent on the needs of customers in a given location and combining them with geothermal waters and photovoltaics is presented. The potential of deep geothermal waters is based on two reservoirs built of carbonate rocks, namely Devonian and Upper Jurassic, which mainly consist of dolomite and limestone. The theoretical potential of water intake equal to the nominal heating capacity of a geothermal installation is estimated at 3.3 and 2.0 MW, respectively. Shallow geothermal energy potential varies within the city, reflecting the complex geological structure of the city. Apart from typical borehole heat exchangers (BHEs), the shallower water levels may represent a significant potential source for both heating and cooling by means of water heat pumps. For the heating network, it has been proposed to use modular heat pumps with hybrid sources, which will allow for the flexible development of the network in places previously unavailable or unprofitable. In the case of balancing production and demand, a photovoltaic installation can be an effective and sufficient source of electricity that will cover the annual electricity demand generated by the heat pump installation, when it is used for both heating and cooling. The alternating demand of facilities for heating and cooling energy, caused by changes in the seasons, suggests potential for using seasonal cold and heat storage.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4625
Author(s):  
Alisa Freyre ◽  
Stefano Cozza ◽  
Matthias Rüetschi ◽  
Meinrad Bürer ◽  
Marlyne Sahakian ◽  
...  

In this paper, we perform a literature review on the current state of knowledge about homeowners in the context of the adoption of renewable heating systems. Despite a considerable number of studies about homeowners, homeowner–installer interactions, and ways to improve the effectiveness of renewable heating programs, based on homeowner knowledge, have not yet been studied in much detail. To address these knowledge gaps, we conduct a qualitative study on single-family house owners who installed heat pumps and took part in a renewable heating program in Geneva, Switzerland. We cover homeowner practices in choosing installers and heating system types, homeowners’ feedback about heat pump installation and use, as well as their experience in participation in the renewable heating program. Based on the literature review and the findings from the interviews, we provide the following recommendations on how to increase the effectiveness of renewable heating programs: (a) support for homeowners should not be limited to financial incentives; (b) partnership programs with installers could help to increase the quality of installation services and enable homeowners to choose qualified installers; and (c) assisting homeowners in pre-qualification and ex-post analysis, in learning how to operate their renewable heating systems and in solving problems during the post-installation period, can contribute to improved technology reputation, which can, in turn, increase technology uptake by other homeowners.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2851 ◽  
Author(s):  
Kenneth Leerbeck ◽  
Peder Bacher ◽  
Rune Grønborg Junker ◽  
Anna Tveit ◽  
Olivier Corradi ◽  
...  

An optimized heat pump control for building heating was developed for minimizing CO 2 emissions from related electrical power generation. The control is using weather and CO 2 emission forecasts as inputs to a Model Predictive Control (MPC)—a multivariate control algorithm using a dynamic process model, constraints and a cost function to be minimized. In a simulation study, the control was applied using weather and power grid conditions during a full-year period in 2017–2018 for the power bidding zone DK2 (East, Denmark). Two scenarios were studied; one with a family house and one with an office building. The buildings were dimensioned based on standards and building codes/regulations. The main results are measured as the CO 2 emission savings relative to a classical thermostatic control. Note that this only measures the gain achieved using the MPC control, that is, the energy flexibility, not the absolute savings. The results show that around 16% of savings could have been achieved during the period in well-insulated new buildings with floor heating. Further, a sensitivity analysis was carried out to evaluate the effect of various building properties, for example, level of insulation and thermal capacity. Danish building codes from 1977 and forward were used as benchmarks for insulation levels. It was shown that both insulation and thermal mass influence the achievable flexibility savings, especially for floor heating. Buildings that comply with building codes later than 1979 could provide flexibility emission savings of around 10%, while buildings that comply with earlier codes provided savings in the range of 0–5% depending on the heating system and thermal mass.


Author(s):  
H. Harter ◽  
B. Willenborg ◽  
W. Lang ◽  
T. H. Kolbe

Abstract. Reducing the demand for non-renewable resources and the resulting environmental impact is an objective of sustainable development, to which buildings contribute significantly. In order to realize the goal of reaching a climate-neutral building stock, it must first be analyzed and evaluated in order to develop optimization strategies. The life cycle based consideration and assessment of buildings plays a key role in this process. Approaches and tools already exist for this purpose, but they mainly take the operational energy demand of buildings and not a life cycle based approach into account, especially when assessing technical building services (TBS). Therefore, this paper presents and applies a methodical approach for the life cycle based assessment of the TBS of large residential building stocks, based on semantic 3D city models (CityGML). The methodical approach developed for this purpose describes the procedure for calculating the operational energy demand (already validated) and the heating load of the building, the dimensioning of the TBS components and the calculation of the life cycle assessment. The application of the methodology is illustrated in a case study with over 115,000 residential buildings from Munich, Germany. The study shows that the methodology calculates reliable results and that a significant reduction of the life cycle based energy demand can be achieved by refurbishment measures/scenarios. Nevertheless, the goal of achieving a climate-neutral building stock is a challenge from a life cycle perspective.


2020 ◽  
Author(s):  
Eric Wagner ◽  
Benjamin McDaniel ◽  
Dragoljub Kosanovic

Ground-source heat pump (GSHP) systems have been implemented at large scales on several university campuses to provide heating and cooling. In this study, we test the idea that a GSHP system, as a replacement for an existing Combined Heat and Power (CHP) heating system coupled with conventional cooling systems, could reduce CO2 emissions, and provide a cost benefit to a university campus. We use the existing recorded annual heating and cooling loads supplied by the current system and an established technique of modeling the heat pumps and borehole heat exchangers (BHEs) using a TRNSYS model. The GSHP system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Results show that despite a decrease in heating and cooling energy usage and CO2 emissions are achieved, a significant increase in electric demand and purchased electricity result in an overall cost increase. These results highlight the need for thermal energy storage, onsite distributed energy resources and/or demand response in cases where electric heat pumps are used to help mitigate electric demand during peak periods.


2021 ◽  
Author(s):  
Stephan Göbel ◽  
Elaine Schmitt ◽  
Philipp Mehrfeld ◽  
Dirk Müller

2013 ◽  
Vol 7 (4) ◽  
pp. 28-33
Author(s):  
Monika Pawlita

Background: The methods of heating houses with system components determine the energy-saving systems. Energy-saving solutions allow to maintain comfortable conditions in the house, while minimizing the cost associated with its operation and at the same time helping to protect natural environment. The examples of such solutions include condensing boilers, heat pumps and solar collectors.Material and methods: The object of the analysis in this paper is typical single-family house occupying the area of 150 m². The comparison of analyzed heating system for a single-family house, including modern energy sources, allows the assessment of the most cost-effective method of heating. Results: Choosing rational method of heating for a single-family house is dictated mainly by economic reasons. The efficiency of the heating sources is also very important. In addition, an important factor is a heating period, which depends on the weather conditions in a given year.Conclusions: The costs of fuel/energy are still growing. Fuel selection is determined mainly by fuel calorific value and the price. To select the type of the heating source one must take into account the cost of kWh of heat.


2019 ◽  
Vol 1343 ◽  
pp. 012079
Author(s):  
Nicole Calame ◽  
Alisa Freyre ◽  
Fabrice Rognon ◽  
Simon Callegari ◽  
Matthias Rüetschi

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 996 ◽  
Author(s):  
Li Huang ◽  
Rongyue Zheng ◽  
Udo Piontek

A solar cooling and heating system incorporated with two air-source heat pumps was installed in Ningbo City, China and has been operating since 2018. It is composed of 40 evacuated tube modules with a total aperture area of 120 m2, a single-stage and LiBr–water-based absorption chiller with a cooling capacity of 35 kW, a cooling tower, a hot water storage tank, a buffer tank, and two air-source heat pumps, each with a rated cooling capacity of 23.8 kW and heating capacity of 33 kW as the auxiliary system. This paper presents the operational results and performance evaluation of the system during the summer cooling and winter heatingperiod, as well as on a typical summer day in 2018. It was found that the collector field yield and cooling energy yield increased by more than 40% when the solar cooling and heating system is incorporated with heat pumps. The annual average collector efficiency was 44% for cooling and 42% for heating, and the average coefficient of performance (COP) of the absorption chiller ranged between 0.68 and 0.76. The annual average solar fraction reached 56.6% for cooling and 62.5% for heating respectively. The yearly electricity savings accounted for 41.1% of the total electricity consumption for building cooling and heating.


Sign in / Sign up

Export Citation Format

Share Document