scholarly journals Thermodynamic analysis of a variable viscosity reactive hydromagnetic couette flow within parallel plates

2021 ◽  
Vol 47 (2) ◽  
pp. 432-441
Author(s):  
Anthony R Hassan ◽  
Olufemi W Lawal ◽  
Funmilayo F Amurawaye

This investigation is to consider the impact of a temperature-dependent variable viscosity of a reactive hydromagnetic Couette fluid flowing within parallel plates. The variable property of the fluid viscosity is thought to be an exponential relation of temperature under the impact of magnetic strength. The differential equations controlling the smooth movement of fluid and energy transfer are modeled and solved by using the series solution of modified Adomian decomposition technique (mADM). The outcomes are shown in tables and graphs for different estimations of thermophysical properties present in the flow regime together with the rate of entropy generation and irreversibility distribution outcome. Keywords: Reactive fluids, Couette Flow, variable viscosity, hydromagnetic and modified Adomian decomposition method (mADM).

2016 ◽  
Vol 63 (1) ◽  
pp. 129-144
Author(s):  
Mohammad Javad Noroozi ◽  
Seyfolah Saedodin ◽  
Davood Domiri Ganji

Abstract The effect of laser, as a heat source, on a one-dimensional finite body was studied in this paper. The Cattaneo-Vernotte non-Fourier heat conduction model was used for thermal analysis. The thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The obtained equations were solved using the approximate-analytical Adomian Decomposition Method (ADM). It was concluded that the non-linear analysis is important in non-Fourier heat conduction problems. Significant differences were observed between the Fourier and non-Fourier solutions which stresses the importance of non-Fourier solutions in the similar problems.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Inayat Ullah ◽  
M. T. Rahim ◽  
Hamid Khan ◽  
Mubashir Qayyum

The aim of this paper is to compare the efficiency of various techniques for squeezing flow of an incompressible viscous fluid in a porous medium under the influence of a uniform magnetic field squeezed between two large parallel plates having slip boundary. Fourth-order nonlinear ordinary differential equation is obtained by transforming the Navier-Stokes equations. Resulting boundary value problem is solved using Differential Transform Method (DTM), Daftardar Jafari Method (DJM), Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), and Optimal Homotopy Asymptotic Method (OHAM). The problem is also solved numerically using Mathematica solver NDSolve. The residuals of the problem are used to compare and analyze the efficiency and consistency of the abovementioned schemes.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 163 ◽  
Author(s):  
Zeeshan Khan ◽  
Haroon Ur Rasheed ◽  
Saeed Islam ◽  
Sahib Noor ◽  
Ilyas Khan ◽  
...  

This article examines a wire coating technique using a viscoelastic Eyring–Powell fluid in which magnetohydrodynamic (MHD) flow, thermal transfer, and Joule heating effects are studied. Temperature-dependent, variable-viscosity models are used. Flexible-viscosity models which are temperature dependent are also considered. The interface of the thermal boundary layer which describe the flux and thermal convection phenomena, are evaluated by using a dominant numerical technique known as the fourth-order Runge–Kutta method. In particular, this article takes into account the impact of a permeable matrix which behaves like a dielectric in order to avoid heat dissipation. The effect of thermal generation is also explained, since it controls power. The novel effects for the numerous parameters which affect the velocity and temperature profiles on the wire coating process are investigated through graphs explained in detail. These include non-Newtonian, hydromagnetic, permeability, and heat source/sink effects. For validation purposes, the numerical scheme is also compared with a semi-numerical technique HAM and BVPh2 software, and found a closed agreement with the numerical results.


Author(s):  
Kuljeet Singh ◽  
Ranjan Das ◽  
Rohit K Singla

In this paper, the implementation of the Adomian decomposition method is demonstrated to solve a nonlinear heat transfer problem for a stepped fin involving all temperature-dependent means of heat transfer and nonlinear boundary conditions. Unlike conventional insulated tip assumption, to make the present problem more practical, the fin tip is assumed to disperse heat by convection and radiation. Thermal parameters such as the thermal conductivity, the surface heat transfer coefficient and the surface emissivity are considered to be temperature-dependent. Adomian polynomials are first obtained and then a set of Adomian decomposition method results is validated with pertinent results of the differential transformation method reported in the literature. Effects of different thermo-physical parameters on the temperature distribution and the efficiency have been exemplified. The study reveals that for a given set of conditions, the stepped fin may perform better than the straight fin.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Hamid Khan ◽  
S. Islam ◽  
Javed Ali ◽  
Inayat Ali Shah

We investigate squeezing flow between two large parallel plates by transforming the basic governing equations of the first grade fluid to an ordinary nonlinear differential equation using the stream functionsur(r,z,t)=(1/r)(∂ψ/∂z)anduz(r,z,t)=−(1/r)(∂ψ/∂r)and a transformationψ(r,z)=r2F(z). The velocity profiles are investigated through various analytical techniques like Adomian decomposition method, new iterative method, homotopy perturbation, optimal homotopy asymptotic method, and differential transform method.


2006 ◽  
Vol 2006 ◽  
pp. 1-14 ◽  
Author(s):  
Hazem A. Attia

This paper studies the effect of variable viscosity on the transient Couette flow of dusty fluid with heat transfer between parallel plates. The fluid is acted upon by a constant pressure gradient and an external uniform magnetic field is applied perpendicular to the plates. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The upper plate is moving with a uniform velocity while the lower is kept stationary. The governing nonlinear partial differential equations are solved numerically and some important effects for the variable viscosity and the uniform magnetic field on the transient flow and heat transfer of both the fluid and dust particles are indicated.


2020 ◽  
Vol 4 (3) ◽  
pp. 389-401
Author(s):  
O. A. Ajibade ◽  
B. K. Jha ◽  
H. M. Jibril ◽  
Yusuf A. Bichi

In this paper, we investigate steady free convective Couette flow in a vertical channel with nonlinear thermal radiation, dynamic viscosity and dynamic thermal conductivity effects. The investigation is motivated by the studies of some researchers which assumed linear thermal radiation and constant fluid properties. However, this is uncalled for; as these assumptions do not reflect true behavior of the flow. For instance; increase in temperature affects fluid viscosity, thermal conductivity thereby changing the transport phenomenon. Here; the investigation considers both the fluid viscosity and thermal conductivity to be dependent on temperature with the thermal radiation adopting nonlinear form. Due to this reasons, the associated flow equations are highly nonlinear and exhibit no analytical solution and therefore require the use of Adomian decomposition method (ADM) of solution. The attained ADM solution is then coded into computer algebra package of mathematica where results under the parameters of interest are presented and discussed. Results of the investigation show that raising the thermal radiation leads to corresponding rise in both the velocity and temperature of the fluid in the channel. Furthermore; lessening the viscosity and thermal conduction of the fluid were identified to escalate both velocity and temperature of the fluid.


2008 ◽  
Vol 86 (2) ◽  
pp. 383-389 ◽  
Author(s):  
O D Makinde

This study investigates the inherent irreversibility in the flow of a variable (temperature-dependent) viscosity fluid through a channel with parallel plates. The channel is narrow so that the lubrication approximation may be applied, and the temperature-dependent nature of viscosity is assumed to follow an exponential model. The system is assumed to exchange heat with the ambient surroundings following Newton’s cooling law. Using a perturbation method coupled with a special type of Hermite–Padé approximation technique, the simplified governing nonlinear equations are solved and the important properties of overall flow structure, including velocity field, temperature field, and thermal criticality conditions are derived, which essentially expedite obtaining expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field. PACS Nos.: 44.10.+a, 47.11.–j, 47.15.gm


Sign in / Sign up

Export Citation Format

Share Document