scholarly journals Targeted regulation of plasmid DNA expression in eukaryotic cells with a methylated-DNA-binding activator

2021 ◽  
Author(s):  
Isioma Enwerem-Lackland ◽  
Eric Warga ◽  
Margaret Dugoni ◽  
Jacob Elmer ◽  
Karmella A. Haynes

Purpose: Targeted regulation of transfected extra-chromosomal plasmid DNA typically requires the integration of 9 - 20 bp docking sites into the plasmid. Here, we report an elegant approach, The Dpn Adaptor Linked Effector (DAL-E) system, to target fusion proteins to 6-methyladenosine in GATC, which appears frequently in popular eukaryotic expression vectors and is absent from endogenous genomic DNA. Methods: The DNA-binding region from the DpnI endonuclease binds 6-methyladenosine within the GATC motif. We used a Dpn-transcriptional activator (DPN7-TA) fusion to induce gene expression from transiently transfected pDNAs. Results: We validated methylation-dependent activity of DPN7-TA with a panel of target pDNAs. We observed stronger transactivation when GATC targets were located upstream of the transcriptional start site in the target pDNA. Conclusion: DAL-E, consisting of a 108 aa, 12 kD DNA-binding adaptor and a 4 bp recognition site, offers a genetically-tractable, tunable system that can potentially be redesigned to recruit a variety of regulators (e.g. activators, silencers, epigenome editors) to transfected plasmid DNA.

2021 ◽  
Vol 9 (9) ◽  
pp. 1858
Author(s):  
Yingli Zhang ◽  
Zhongchen Li ◽  
Li Li ◽  
Ben Rao ◽  
Lixin Ma ◽  
...  

In this study, a method for the rapid screening, expression and purification of antimicrobial peptides (AMPs) was developed. AMP genes were fused to a heat-resistant CL7 tag using the SLOPE method, and cloned into Escherichia coli and Pichia pastoris expression vectors. Twenty E. coli and ten P. pastoris expression vectors were constructed. Expression supernatants were heated, heteroproteins were removed, and fusion proteins were purified by nickel affinity (Ni-NTA) chromatography. Fusion proteins were digested on the column using human rhinovirus (HRV) 3C protease, and AMPs were released and further purified. Five AMPs (1, 2, 6, 13, 16) were purified using the E. coli expression system, and one AMP (13) was purified using the P. pastoris expression system. Inhibition zone and minimum inhibitory concentration (MIC) tests confirmed that one P. pastoris¬-derived and two E. coli-derived AMPs have the inhibition activity. The MIC of AMP 13 and 16 from E. coli was 24.2 μM, and the MIC of AMP 13 from P. pastoris was 8.1 μM. The combination of prokaryotic and eukaryotic expression systems expands the universality of the developed method, facilitating screening of a large number of biologically active AMPs, establishing an AMP library, and producing AMPs by industrialised biological methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yang Chen ◽  
Zhengyang Huang ◽  
Bin Wang ◽  
Qinming Yu ◽  
Ran Liu ◽  
...  

Retinoic acid-inducible gene I- (RIG-I-) like receptors (RLRs) have recently been identified as cytoplasmic sensors for viral RNA. RIG-I, a member of RLRs family, plays an important role in innate immunity. Although previous investigations have proved that RIG-I is absent in chickens, it remains largely unknown whether the chicken can respond to RIG-I ligand. In this study, the eukaryotic expression vectors encoding duRIG-I full length (duck RIG-I, containing all domains), duRIG-I N-terminal (containing the two caspase activation and recruitment domain, CARDs), and duRIG-I C-terminal (containing helicase and regulatory domains) labeled with 6*His tags were constructed successfully and detected by western blotting. Luciferase reporter assay and enzyme-linked immunosorbent assay (ELISA) detected the duRIG-I significantly activated NF-κB and induced the expression of IFN-βwhen polyinosinic-polycytidylic acid (poly[I:C], synthetic double-stranded RNA) challenges chicken embryonic fibroblasts cells (DF1 cells), while the duRIG-I was inactive in the absence of poly[I:C]. Further analysis revealed that the CARDs (duRIG-I-N) induced IFN-βproduction regardless of the presence of poly[I:C], while the CARD-lacking duRIG-I (duRIG-I-C) was not capable of activating downstream signals. These results indicate that duRIG-I CARD domain plays an important role in the induction of IFN-βand provide a basis for further studying the function of RIG-I in avian innate immunity.


1993 ◽  
Vol 13 (11) ◽  
pp. 6810-6818 ◽  
Author(s):  
X Y Zhang ◽  
N Jabrane-Ferrat ◽  
C K Asiedu ◽  
S Samac ◽  
B M Peterlin ◽  
...  

A mammalian protein called RFX or NF-X binds to the X box (or X1 box) in the promoters of a number of major histocompatibility (MHC) class II genes. In this study, RFX was shown to have the same DNA-binding specificity as methylated DNA-binding protein (MDBP), and its own cDNA was found to contain a binding site for MDBP in the leader region. MDBP is a ubiquitous mammalian protein that binds to certain DNA sequences preferentially when they are CpG methylated and to other related sequences, like the X box, irrespective of DNA methylation. MDBP from HeLa and Raji cells formed DNA-protein complexes with X-box oligonucleotides that coelectrophoresed with those containing standard MDBP sites. Furthermore, MDBP and X-box oligonucleotides cross-competed for the formation of these DNA-protein complexes. DNA-protein complexes obtained with MDBP sites displayed the same partial supershifting with an antiserum directed to the N terminus of RFX seen for complexes containing an X-box oligonucleotide. Also, the in vitro-transcribed-translated product of a recombinant RFX cDNA bound specifically to MDBP ligands and displayed the DNA methylation-dependent binding of MDBP. RFX therefore contains MDBP activity and thereby also EF-C, EP, and MIF activities that are indistinguishable from MDBP and that bind to methylation-independent sites in the transcriptional enhancers of polyomavirus and hepatitis B virus and to an intron of c-myc.


2004 ◽  
Vol 186 (14) ◽  
pp. 4620-4627 ◽  
Author(s):  
Wakao Fukuda ◽  
Toshiaki Fukui ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

ABSTRACT Phosphoenolpyruvate carboxykinase (PCK), which catalyzes the nucleotide-dependent, reversible decarboxylation of oxaloacetate to yield phosphoenolpyruvate and CO2, is one of the important enzymes in the interconversion between C3 and C4 metabolites. This study focused on the first characterization of the enzymatic properties and expression profile of an archaeal PCK from the hyperthermophilic archaeon Thermococcus kodakaraensis (Pck Tk ). Pck Tk showed 30 to 35% identities to GTP-dependent PCKs from mammals and bacteria but was located in a branch distinct from that of the classical enzymes in the phylogenetic tree, together with other archaeal homologs from Pyrococcus and Sulfolobus spp. Several catalytically important regions and residues, found in all known PCKs irrespective of their nucleotide specificities, were conserved in Pck Tk . However, the predicted GTP-binding region was unique compared to those in other GTP-dependent PCKs. The recombinant Pck Tk actually exhibited GTP-dependent activity and was suggested to possess dual cation-binding sites specific for Mn2+ and Mg2+. The enzyme preferred phosphoenolpyruvate formation from oxaloacetate, since the Km value for oxaloacetate was much lower than that for phosphoenolpyruvate. The transcription and activity levels in T. kodakaraensis were higher under gluconeogenic conditions than under glycolytic conditions. These results agreed with the role of Pck Tk in providing phosphoenolpyruvate from oxaloacetate as the first step of gluconeogenesis in this hyperthermophilic archaeon. Additionally, under gluconeogenic conditions, we observed higher expression levels of Pck Tk on pyruvate than on amino acids, implying that it plays an additional role in the recycling of excess phosphoenolpyruvate produced from pyruvate, replacing the function of the anaplerotic phosphoenolpyruvate carboxylase that is missing from this archaeon.


1989 ◽  
Vol 9 (12) ◽  
pp. 5456-5463 ◽  
Author(s):  
G L Shen-Ong ◽  
B Lüscher ◽  
R N Eisenman

The major protein encoded by the c-myb oncogene in many species has been identified as an unstable, nuclear DNA-binding protein with an apparent molecular mass of 75 to 80 kilodaltons (p75c-myb). Recently, an alternatively spliced form of c-myb-encoded mRNA has been identified in murine cells containing either normal or rearranged c-myb genes. This mRNA includes a new exon, termed E6A, formed through use of cryptic splice sites located in the large intron between c-myb exons vE6 and vE7. E6A is predicted to contribute an internal 121-residue in-frame insertion into a region C terminal of the DNA-binding domain the c-myb-encoded protein. Here we report the identification of an 85-kilodalton (p85c-myb-E6A) protein as the translation product of the alternatively spliced E6A c-myb mRNA. This protein as well as p75c-myb were precipitated with anti-Myb antibodies raised against the conserved DNA-binding region of c-Myb. Proteolytic mapping studies showed that the two proteins are highly related but not identical. However, only the p85 protein reacted with an antiserum prepared against the E6A region expressed in bacteria, demonstrating that p85 but not p75 contains E6A sequences. In addition, the mobilities of both p85 and p75 were increased in myeloid tumor cell lines containing proviral integrations upstream of the 5' coding exons of v-myb, indicating that both proteins are truncated forms of c-Myb expressed from the same disrupted allele. p75c-myb and p85c-myb-E6A were indistinguishable with respect to nuclear localization and protein half-life. Furthermore, both forms of Myb were synthesized continuously throughout the cell cycle in 70Z ore-B cells. The contribution of the E6A domain to c-myb function remains to be elucidated.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2748 ◽  
Author(s):  
Ae-Ree Lee ◽  
Na-Hyun Kim ◽  
Yeo-Jin Seo ◽  
Seo-Ree Choi ◽  
Joon-Hwa Lee

Z-DNA is stabilized by various Z-DNA binding proteins (ZBPs) that play important roles in RNA editing, innate immune response, and viral infection. In this review, the structural and dynamics of various ZBPs complexed with Z-DNA are summarized to better understand the mechanisms by which ZBPs selectively recognize d(CG)-repeat DNA sequences in genomic DNA and efficiently convert them to left-handed Z-DNA to achieve their biological function. The intermolecular interaction of ZBPs with Z-DNA strands is mediated through a single continuous recognition surface which consists of an α3 helix and a β-hairpin. In the ZBP-Z-DNA complexes, three identical, conserved residues (N173, Y177, and W195 in the Zα domain of human ADAR1) play central roles in the interaction with Z-DNA. ZBPs convert a 6-base DNA pair to a Z-form helix via the B-Z transition mechanism in which the ZBP first binds to B-DNA and then shifts the equilibrium from B-DNA to Z-DNA, a conformation that is then selectively stabilized by the additional binding of a second ZBP molecule. During B-Z transition, ZBPs selectively recognize the alternating d(CG)n sequence and convert it to a Z-form helix in long genomic DNA through multiple sequence discrimination steps. In addition, the intermediate complex formed by ZBPs and B-DNA, which is modulated by varying conditions, determines the degree of B-Z transition.


Sign in / Sign up

Export Citation Format

Share Document