biodiesel standards
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 13 (22) ◽  
pp. 12737
Author(s):  
Aasma Saeed ◽  
Muhammad Asif Hanif ◽  
Asma Hanif ◽  
Umer Rashid ◽  
Javed Iqbal ◽  
...  

The need for exploring nonfood low-cost sustainable sources for biodiesel production is ever increasing. Commercial and industrial algae cultivation has numerous uses in biodiesel production. This study explores S. elongata as a new algal feedstock for the production of biodiesel that does not compete with food production. The major fatty acids identified in S. elongata oil were oleic (30.5%), lauric (29.9%), myristic (17.0%), and palmitic (14.2%) acids. Transesterification to FAME was conducted using basic (KOH), acidic (HCl), and Zeolitic catalysts for assessment. The yields with acidic (54.6%) and zeolitic (72.7%) catalysts were unremarkable during initial screening. The highest biodiesel yield (99.9%) was achieved using KOH, which was obtained with the optimum reaction conditions of 1.0% catalyst, 60 °C, 4 h, and an oil-to-methanol volume ratio of 1:4. The resulting S. elongata oil methyl esters exhibited densities, CNs, and IVs, that were within the ranges specified in the American (ASTM D6751) and European (EN 14214) biodiesel standards, where applicable. In addition, the high SVs and the moderately high CPs and PPs were attributed to the presence of large quantities of short-chain and saturated FAME, respectively. Overall, the composition and properties of FAME prepared from S. elongaae oil indicate that S. elongata is suitable as an alternative algal feedstock for the production of biodiesel.


2021 ◽  
Vol 16 (10) ◽  
pp. 144-155
Author(s):  
Van Lal Michael Chhandama ◽  
Belur Kumudini Satyan

Microalgae emerged as a competent feedstock for biodiesel production because of high growth rate and lipid content. This work focuses on isolation of novel microalgal strain from different sources of water for the production of biodiesel. The isolated microalgae, Pleurastrum insigne possessed high lipid content (~28 % dcw), further optimized to 57.06 % dcw using a statistical design (CCD) under Response Surface Methodology. Lipid production was optimized by nutrient (nitrogen and phosphorus) and pH stress. The different type of fatty acids present in the optimized lipid was also profiled using GCMS. Biodiesel yield was found to be 82.14 % of the total lipid and the fuel properties tested have met IS, ASTM and EN biodiesel standards.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Naganandhini Srinivasan ◽  
Kiruthika Thangavelu ◽  
Ashika Sekar ◽  
B. Sanjeev ◽  
Sivakumar Uthandi

Abstract Background Oleaginous microorganisms are sustainable alternatives for the production of biodiesel. Among them, oleaginous fungi are known for their rapid growth, short life cycles, no light requirement, easy scalability, and the ability to grow in cheap organic resources. Among all the sources used for biodiesel production, industrial wastewater streams have been least explored. We used oleaginous fungi to decontaminate sago processing wastewater and produce biodiesel. Results Among the 15 isolates screened for lipid production and starch utilization using the Nile red staining assay and amylase plate screening, three isolates accumulated > 20% (w/w) of their dry cell mass as lipids. The isolate ASEF14 exhibited the highest lipid accumulation (> 40%) and was identified as Aspergillus caespitosus based on the 28S rRNA gene sequencing. The maximum lipid content of 54.4% in synthetic medium (SM) and 37.2% in sago processing wastewater (SWW) was produced by the strain. The Fourier-transform infrared (FTIR) spectroscopy of the fungal oil revealed the presence of functional peaks corresponding to major lipids. Principal component analysis (PCA) of the FTIR data revealed major changes in the fatty acid composition during the transition from the growth phase (Days 1–3) to the lipid accumulation phase (Days 4–7). The fatty acid methyl esters (FAME) analysis of fungal oil from SWW contained 43.82% and 9.62% of saturated and monounsaturated fatty acids, respectively. The composition and percentage of individual FAME derived from SWW were different from SM, indicating the effect of nutrient and fermentation time. The fuel attributes of the SM- and SWW-grown fungal biodiesel (kinematic viscosity, iodine value, cetane number, cloud and pour point, linolenic acid content, FA > 4 double bonds) met international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards. In addition to biodiesel production, the strain removed various contaminants such as total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), and cyanide up to 58.6%, 53.0%, 35.2%, 94.5%, 89.3%, 91.3%, 74.0%, 47.0%, and 53.84%, respectively, from SWW. Conclusion These findings suggested that A. caespitosus ASEF14 is a potential candidate with high lipid accumulating ability (37.27%), capable of using SWW as the primary growth medium. The medium and incubation time alter the FAME profile of this fungus. The physical properties of fungal oil were in accordance with the biodiesel standards. Moreover, it decontaminated SWW by reducing several polluting nutrients and toxicants. The fungal biodiesel produced by this cost-effective method could serve as an alternate path to meet global energy demand.


2020 ◽  
Vol 41 (2) ◽  
pp. 185
Author(s):  
Camila Cassia Cordeiro ◽  
Julio Cezar Girardi ◽  
Reinaldo Aparecido Bariccatti ◽  
Douglas Cardoso Dragunski ◽  
Camila Zeni do Amaral

Babassu oil is extracted from the babassu palm, one of the most important plants in the north and northeast Brazilian regions, and like many biofuels, it does not have adequate properties to be used as pure fuel, especially under low-temperature conditions. Therefore, researches to improve the physical-chemical properties of these biofuels are needed, one of the most common methods is using additives, usually synthetic ones, which are not environmentally friendly. A good alternative would be to try to found natural compounds with this potential. This paper describes the effects of the addition of two natural compounds, tung biodiesel, and camphor, in the physical properties of babassu biodiesel. These additives were select because of their physical-chemical properties, which can potentially improve the babassu biodiesel ones. They were tested separately, the camphor at the 3, 4, 5, 6 % proportions, and the tung biodiesel at 3, 5, 9, 12 %. The results were compared to biodiesel standards, limited by the Brazilian National Agency of Petroleum, Natural Gas, and Biofuels (ANP), and for both additives, the 3 % proportion showed the best suited to the quality standards established at the Brazilian normative. Thus, was observed that the camphor and the tung biodiesel has the potential to be efficient additives in babassu biodiesel


2020 ◽  
Vol 68 (2) ◽  
pp. 129-136
Author(s):  
Sazia Ifteqar ◽  
Rajia Sultana ◽  
Sujit Banik ◽  
AFM Mustafizur Rahman

The present study focuses on the utilization of non-edible Aphanamixis polystachya seed oil as a potential feedstock for the production of biodiesel. The extracted oil from non-edible seed could not be directly exploited for biodiesel production owing to its high free fatty acid (FFA) content of 5.785%, so acid catalyzed esterification was applied to reduce FFA of oil to zero followed by base-catalyzed transesterification to convert esterified product to its mono-esters. Thermogravimetric analysis (TGA) revealed that the mass percentage corresponding to biodiesel under optimum conditions was 74.38%. The conversion of the triglycerides in the oil into biodiesel through transesterification was confirmed using FT-IR spectroscopy. The elemental analysis of the produced biodiesel was studied. The produced biodiesel had properties which were comparable with biodiesel standards and could be utilized as an alternative diesel fuel without any hardware modifications. Dhaka Univ. J. Sci. 68(2): 129-136, 2020 (July)


2015 ◽  
Vol 13 (3) ◽  
pp. 395-406 ◽  
Author(s):  
Y. V. V. Satyanarayana Murthy ◽  
Rajeswara R. Resapu ◽  
M. R. S. Satyanarayana ◽  
Ramakrishna Jogi

Abstract Jatropha curcas oil and methanol are transesterified using potassium triphosphate as base catalyst. The effects of methanol to oil molar ratio, reaction temperature, stirring speed, catalyst concentration, solubility and its reusability on the yield of biodiesel are investigated. The base catalyst tri-potassium phosphate (K3PO4) is found to be highly suitable for oils having less than 1.5% free fatty acids (FFA). Highest biodiesel yield (approximately 92%) is acquired under optimum conditions of 9:1 methanol to oil molar ratio, 2% catalyst at 70°C reaction temperature at a stirring speed of 650 rpm. The chemical activity of K3PO4 is found to be similar to that of base catalyst potassium hydroxide (KOH) and the catalyst solubility in biodiesel as determined by atomic absorption spectra is only 4.81 ppm. It has been found that K3PO4 is highly hygroscopic and its reusability drastically decreases upon further usage and it can be reused only in wetted condition for three continuous usages with drastic reduction in catalytic strength. The biodiesel samples prepared were tested for several physicochemical properties and compared with the values of European biodiesel standards. The fatty acid methyl esters (FAME), also referred to as jatropha methyl esters (JME) in this paper, have been analyzed by gas chromatography and thermogravimetric analysis.


2014 ◽  
Vol 625 ◽  
pp. 494-497 ◽  
Author(s):  
Awais Bokhari ◽  
Suzana Yusup ◽  
Junaid Ahmad ◽  
Ruzaimah Nik Mohammad Kamil

Environmental emissions concerns and the precautions of energy supply have motivated curiosity in the growth of alternatives for fossil based energy carriers and chemicals. Biodiesel as an alternative fuel has a potential to overcome energy crisis and reduce exhaust emissions to environment. Unutilized Rubber seed oil (RSO) alkyl esters have a huge potential to avoid food scarcity issue with contributing to energy sector. Current research contributes to produce biodiesel from the crude blends of palm oil and RSO. Parameters that effect base transesterification were extensively studied and methyl esters were characterized according to international biodiesel standards. The low-temperature flow properties and oxidation stability of the produced methyl esters were enhanced by blending with Fossil Diesel (FD) fuel.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Nour Sh. El-Gendy ◽  
A. Hamdy ◽  
Salem S. Abu Amr

This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.


2014 ◽  
Vol 472 ◽  
pp. 780-784
Author(s):  
Thomas Kivevele ◽  
Zhongie Huan

Biodiesel from mungongo seeds oil (Schinziophyton rautanenii) was investigated in the present study to determine its suitability for use as substitute of petro diesel. The fuel properties of Mungongo Oil Methyl ester (MOME) such as cetane number, kinematic viscosity, oxidative stability, lubricity, cloud point, pour point, cold filter plugging point, flash point, acid value, density, higher heating value, free and total glycerol were determined and compared with global biodiesel standards such as ASTM 6751 and EN 14214. Most of the determined fuel related properties of MOME fulfilled the minimum requirements of ASTM D6751 and EN 14214 biodiesel standards except oxidation stability. The stability of biodiesel is very critical and biodiesel requires antioxidant to meet storage requirements and to ensure fuel quality at all points along the distribution chain. Therefore, three antioxidants; 1, 2, 3 tri-hydroxy benzene (Pyrogallol, PY), 3, 4, 5-tri hydroxy benzoic acid (Propyl Gallate, PG) and 2-tert butyl-4-methoxy phenol (Butylated Hydroxyanisole, BHA) were investigated. The result showed that, PY and PG were more effective antioxidants than BHA.


Sign in / Sign up

Export Citation Format

Share Document